Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T11:15:47.522Z Has data issue: false hasContentIssue false

Sodium, potassium and chloride utilization by rats given various inorganic anions

Published online by Cambridge University Press:  09 March 2007

Susan M. Kaup
Affiliation:
Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
Alison R. Behling
Affiliation:
Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
J. L. Greger
Affiliation:
Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of the present studies was to examine the effect of ingestion of sodium and potassium salts of various fixed anions on blood pressure, and to assess interactions among electrolytes. In the first study, Sprague-Dawley rats fed on purified diets supplemented with Na salts of chloride, sulphate, bisulphate, carbonate and bicarbonate for 7 weeks developed higher blood pressures than rats fed on the basal diet. In a second study, rats fed on Na or K salts of HSO4, HCO3 or Cl had higher blood pressures than rats fed on the basal diet. Blood pressure measurements were not correlated with plasma volume, plasma renin activity, or plasma atrial natriuretic peptide concentrations at 7 weeks. Plasma renin activity was depressed in rats fed on supplemental Na and even more in rats fed on supplemental K salts rather than the basal diet. Generally, rats fed on supplemental Na excreted Na in urine and absorbed Na in the gut more efficiently than rats fed on the basal diet or diets supplemented with K, but the anions fed also altered Na absorption and excretion. In a third study, rats fed on diets supplemented with any Cl salt, but especially KCI, absorbed K more efficiently than those fed on the basal diet. In studies 1 and 2, the efficiency of urinary excretion of K was greatest when HCO3 and CO3 salts were fed and least when HSO4 salts were fed. Despite large variations in the efficiency of absorption and excretion of Na and K, tissue levels of the electrolytes remained constant.

Type
Interaction involving Inorganic Nutrients
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

American Institute of Nutrition (1977). Report of the American Institute of Nutrition ad hoc committee on standards for nutrition studies. Journal of Nutrition 107, 13401348.CrossRefGoogle Scholar
Brenner, B. M., Ballermann, B. J., Gunning, M. E. & Zeidel, M. L. (1990). Diverse biological actions of atrial natriuretic peptide. Physiology Review 70, 665699.CrossRefGoogle ScholarPubMed
Castenmiller, J. J. M., Mensink, R. P., van der Heijden, L., Kouwenhoven, T., Hautvast, J. G. A. J., de Leeuw, P. W. & Schaafsma, G. (1985). The effect of dietary sodium on urinary calcium and potassium excretion in normotensive men with different calcium intakes. American Journal of Clinical Nutrition 41, 5260.CrossRefGoogle ScholarPubMed
Charlton, J. A. & Armstrong, D. G. (1989). The effect of varying the sodium or potassium intake, or both, on magnesium status in the rat. British Journal of Nutrition 62, 399406.CrossRefGoogle ScholarPubMed
Ching, S. V., Fettman, M. J., Hamar, D. W., Nagode, L. A. & Smith, K. R. (1989). The effect of chronic dietary acidification using ammonium chloride on acid-base and mineral metabolism in the adult cat. Journal of Nutrition 119, 902915.Google Scholar
Goldstein, R. S., Tarloff, J. B. & Hook, J. B. (1988). Age-related nephropathy in laboratory rats. FASEB Journal 2, 22412251.Google Scholar
Greger, J. L., Kaup, S. M. & Behling, A. R. (1991). Calcium, magnesium and phosphorus utilization by rats fed sodium and potassium salts of various inorganic anions. Journal of Nutrition 121, 13821388.Google Scholar
Greger, J. L., Krashoc, C. L. & Krzykowski, C. E. (1987). Calcium, sodium and chloride interactions in rats. Nutrition Research 7, 401412.Google Scholar
Greger, J. L. & Snedeker, S. M. (1980). Effect of dietary protein and phosphorus levels on the utilization of zinc, copper and manganese by adult males. Journal of Nutrition 110, 22432253.Google Scholar
Jeffery, P. G. & Hutchinson, D. (1981). Chemical Methods of Rock Analysis, 3rd ed., pp. 141142. Oxford: Pergamon Press.Google Scholar
Kaup, S. M. & Greger, J. L. (1990). Effect of various chloride salts on the utilization of phosphorus, calcium and magnesium. Journal of Nutritional Biochemistry 1, 542548.Google Scholar
Kaup, S. M., Greger, J. L., Marcus, M. S. K. & Lewis, N. M. (1991). Effect of chronic ingestion of various chloride salts on blood pressure, fluid compartments and utilization of chloride. Journal of Nutrition 121, 330337.CrossRefGoogle Scholar
Kirchner, K. A., Kotchen, T. A., Galla, J. H. & Luke, R. G. (1978). Importance of chloride for acute inhibition of renin by sodium chloride. American Journal of Physiology 235, F444F450.Google ScholarPubMed
Kotchen, T. A., Krzyzaniak, K. E., Anderson, J. E., Ernst, C. B., Galla, J. H. & Luke, R. G. (1980). Inhibition of renin secretion by HCI is related to chloride in both dog and rat. American Journal of Physiology 239, F44F49.Google Scholar
Kotchen, T. A., Luke, R. G., Ott, C. E., Galla, J. H. & Whitescarver, S. (1983). Effect of chloride on renin and blood pressure responses to sodium chloride. Annals of Internal Medicine 98, 817822.Google Scholar
Kurtz, T. W., Al-Bander, H. A. & Morris, R. C. Jr (1987). ‘Salt-sensitive’ essential hypertension in men. New England Journal of Medicine 317, 10431048.Google Scholar
Lemann, J. Jr, Lennon, E. J., Goodman, A. D., Litzow, J. R. & Relman, A. S. (1965). The net balance of acid in subjects given large loads of acid or alkali. Journal of Clinical Investigation 44, 507517.Google Scholar
Luft, F. C. & Weinberger, M. H. (1982). Sodium intake and essential hypertension. Hypertension 4, Suppl. 111, III14III19.CrossRefGoogle ScholarPubMed
Pennington, J. A. T., Wilson, D. B., Newell, R. F., Harland, B. F., Johnsen, R. D. & Vanderveen, J. E. (1984). Selected minerals in food surveys, 1974 to 1981/1982. Journal of the American Dietetic Association 84, 771780.Google Scholar
SAS Institute Inc. (1985). SAS/STATTM Guide for Personal Computers, version 6 ed. Cary, NC: SAS Institute Inc.Google Scholar
Scandling, J. D. & Ornt, D. B. (1987). Mechanism of potassium depletion during chronic metabolic acidosis in the rat. American Journal of Physiology 252, F122F130.Google Scholar
Simchon, S., Manger, W. M., Carlin, R. D., Peeters, L. L., Rodriguez, J., Batista, D., Brown, T., Merchant, N. B., Jun, K. M. & Chien, S. (1989). Salt-induced hypertension in Dahl salt-sensitive rats. Hypertension 13, 612621.CrossRefGoogle ScholarPubMed
Stephens, G. A., Davis, J. O., Freeman, R. H. & Watkins, C. E. (1978). Effect of sodium and potassium salts with anions other than chloride on renin secretion in the dog. American Journal of Physiology 234, F10F15.Google Scholar
Tarazi, R. C. (1976). Hemodynamic role of extracellular fluid in hypertension. Circulation Research 38, Suppl. II, 11731183.Google Scholar
Whitescarver, S. A., Holtzclaw, B. J., Downs, J. H., Ott, C. E., Sowers, J. R. & Kotchen, T. A. (1986). Effect of dietary chloride on salt-sensitive and renin-dependent hypertension. Hypertension 8, 5661.Google Scholar
Whitescarver, S. A., Ott, C. E., Jackson, B. A., Guthrie, G. P. Jr & Kotchen, T. A. (1984). Salt-sensitive hypertension: contribution of chloride. Science 332, 14301432.Google Scholar
Whiting, S. J. & Cole, D. E. C. (1986). Effect of dietary anion composition on acid-induced hypercalciuria in the adult rat. Journal of Nutrition 116, 388394.Google Scholar
Whiting, S. J. & Draper, H. H. (1981). Effect of chronic acid load as sulfate or sulfur amino acids on bone metabolism in adult rats. Journal of Nutrition 111, 17211726.Google Scholar