Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T18:25:30.143Z Has data issue: false hasContentIssue false

Simulation of the dynamics of protozoz in the rumen

Published online by Cambridge University Press:  06 August 2007

Jan Dijkstra
Affiliation:
Wageningen Agricultural University, Department of Animal Nutrition, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A modified mathematical model is described that simulates the dynamics of rumen micro-organisms, with specific emphasis on the rumen protozoa. The model is driven by continuous inputs of nutrients and consists of nineteen state variables, which represent the N, carbohydrate, fatty acid and microbial pools in the rumen. Several protozoal characteristics were represented in the model, including preference for utilization of starch and sugars compared with fibre, and of insoluble compared with soluble protein; engulfment and storage of starch; no utilization of NH3 to synthesize amino acids; engulfment and digestion of bacteria and protozoa; selective retention within the rumen; death and lysis related to nutrient availability. Comparisons between model predictions and experimental observations showed reasonable agreement for protozoal biomass in the rumen, but protozoal turnover time was not predicted well. Sensitivity analyses highlighted the need for more reliable estimates of bacterial engulfment rate, protozoal maintenance requirement, and death rate. Simulated protozoal biomass was increased rapidly in response to increases in dietary starch content, but further increases in starch content of a high-concentrate diet caused protozoal mass to decline. Increasing the sugar content of a concentrate diet, decreased protozoa, while moderate elevations of the sugar content on a roughage diet increased protozoal biomass. Simulated protozoal biomass did not change in response to variations in dietary neutral-detergent fibre (NDF) content. Reductions in dietary N resulted in an increased protozoal biomass. Depending on the basal intake level and dietary composition, protozoal concentration in the rumen was either increased or decreased by changes in feed intake level. Such changes in relative amounts of protozoal and bacterial biomass markedly affected the supply of nutrients available for absorption. The integration of protozoal, bacterial and dietary characteristics through mathematical representation provided an improved understanding of mechanisms of protozoal responses to changes in dietary inputs.

Type
Modelling protozoan numbers in the rumen
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Abe, M., Iriki, T., Tobe, N. & Shibui, H. (1981) Sequestration of holotrich protozoa in the reticulo-rumen of cattle. Applied and Environmental Microbiology 41, 758765.CrossRefGoogle ScholarPubMed
Amos, H. E. & Akin, D. E. (1978) Rumen protozoal degradation of structurally intact forage tissues. Applied and Environmental Microbiology 36, 513522.CrossRefGoogle ScholarPubMed
Bauchop, T. & Clarke, R. T. J. (1976) Attachment of the ciliate Epidinium Crawley to plant fragments in the sheep rumen. Applied and Environmental Microbiology 32, 417422.CrossRefGoogle ScholarPubMed
Bazin, M. J. (1981) Mixed culture kinetics. In Mixed Culture Fermentations, pp. 2551 [Bushell, M.E. and Slater, J. H., editors]. London: Academic Press.Google Scholar
Brown, D. & Rothery, P. (1993) Models in Biology: Mathematics, Statistics and Computing. Chichester: John Wiley & Sons Ltd.Google Scholar
Buttery, P. J. (1977) Aspects of the biochemistry of rumen fermentation and their implication in ruminant productivity. In Recent Advances in Animal Nutrition 1977, pp. 824 [w., Haresign and D., Lewis, editors] London: Butterworths.CrossRefGoogle Scholar
Cockburn, J. E. & Williams, A. P. (1984) The simultaneous estimation of the amounts of protozoal, bacterial and dietary N entering the duodenum of steers. British Journal of Nutrition 51, 111132.CrossRefGoogle ScholarPubMed
Coleman, G. S. (1967) The metabolism of free amino acids by washed suspensions of the rumen ciliate Entodinium caudatum. Journal of General Microbiology 47, 433447.CrossRefGoogle Scholar
Coleman, G. S. (1975) The interrelationship between rumen ciliate protozoa and bacteria. In Digestion and Metabolism in the Ruminant, pp. 149164 [McDonald, I.W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Coleman, G. S. (1986) The metabolism of rumen ciliate protozoa. FEMS Microbiological Reviews 39, 321344.CrossRefGoogle Scholar
Coleman, G. S. (1988) The importance of rumen ciliate protozoa in the growth and metabolism of the host ruminant. International Journal of Animal Science 3, 7595.Google Scholar
Coleman, G. S. (1989) Protozoal-bacterial interactions in the rumen. In The Roles of Protomu und Fungi in Ruminant Digestion, pp. 1327 [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Collombier, J., Grolière, C. A., Senaud, J., Grain, J. & Thivend, P. (1984) Etude du rôle des protozoaires ciliés du rumen dans l'apport d'azote microbien entrant dans le duodénum du ruminant, par l'estimation directe de la quantité de ciliés sortant du rumen (Study on the role of rumen ciliate protozoa in the production and passage of microbial nitrogen to the duodenum of ruminants by direct estimation of the number of ciliates leaving the rumen). Protistologica 20, 431436.Google Scholar
Czerkawski, J. W. (1976) Chemical composition of microbial matter in the rumen. Journal of the Science of Food and Agriculture 27, 621632.CrossRefGoogle ScholarPubMed
Czerkawski, J. W. (1987) Reassessment of the contribution of protozoa to the microbial protein supply to the host ruminant animal. Journal of Theoretical Biology 126, 335341.CrossRefGoogle Scholar
De Freitas, M. J. & Fredrickson, A. G. (1978) Inhibition as a factor in the maintenance of the diversity of microbial ecosystems. Journal of General Microbiology 106, 307320.CrossRefGoogle Scholar
Demeyer, D. I., Henderson, C. R. & Prins, R. A. (1978) Relative significance of exogenous and de novo synthesized fatty acids in the formation of rumen microbial lipids in vitro. Applied and Environmental Microbiology 35, 2431.CrossRefGoogle ScholarPubMed
Dijkstra, J. (1993) Mathematical modelling and integration of rumen fermentation processes. PhD Thesis, Wageningen: Agricultural University.Google Scholar
Dijkstra, J., Neal, H. D., St, C., Beever, D. E. & France, J. (1992) Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Journal of Nutrition 122, 22392256.CrossRefGoogle ScholarPubMed
Dijkstra, J., Neal, H. D., St, C., Gill, M., Beever, D. E. & France, J. (1990) Representation of microbial metabolism in a mathematical model of rumen fermentation. In Proceedings of the Third International Workshop on ModeIling Digestion and Metabolism in Farm Animals, pp. 4763 [Robson, A.B. and Poppi, D. P., editors]. Lincoln: Lincoln University Press.Google Scholar
Eadie, J. M., Hyldgaard-Jensen, J., Mann, S. O., Reid, R. S. & Whitelaw, F. G. (1970) Observations on the microbiology and biochemistry of the rumen in cattle given different quantities of a pelleted barley ration. British Journal of Nutrition 24, 157177.CrossRefGoogle ScholarPubMed
Faichney, G. J. (1989) Mean retention time and intra-ruminal degradation of rumen protozoa. Proceedings of the Nutrition Society of Australia 14, 135.Google Scholar
Ffoulkes, D. & Leng, R. A. (1988) Dynamics of protozoa in the rumen of cattle. British Journal of Nutrition 59, 429436.CrossRefGoogle ScholarPubMed
Firkins, J. L., Lewis, S. M., Montgomery, L., Berger, L. L., Merchen, N. R. & Fahey, G. C. Jr (1987) Effects of feed intake and dietary urea concentration on ruminal dilution rate and efficiency of bacterial growth in steers. Journal of Dairy Science 70, 23122321.CrossRefGoogle ScholarPubMed
Forsberg, C. W., Lovelock, L. K. A, Krumholz, L. & Buchanan-Smith, J. G. (1984) Protease activities of rumen protozoa. Applied and Environmental Microbiology 47, 101110.CrossRefGoogle ScholarPubMed
Gill, M., Beever, D. E. & France, J. (1989) Biochemical bases needed for the mathematical representation of whole animal metabolism. Nutrition Research Reviews 2, 181200.CrossRefGoogle ScholarPubMed
Hino, T. & Russell, J. B. (1985) Effect of reducing equivalent disposal and NADH-NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Applied and Environmental Microbiology 50, 13681374.CrossRefGoogle ScholarPubMed
Hino, T. & Russell, J. B. (1987) Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro. Journal of Animal Science 64, 261270.CrossRefGoogle Scholar
Holling, C. S. (1959) Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91, 385398.CrossRefGoogle Scholar
Hungate, R. E. (1966) The Rumen and its Microbes. New York: Academic Press.Google Scholar
Isaacson, H. R., Hinds, F. C., Bryant, M. P. & Owens, F. N. (1975) Efficiency of energy utilization by mixed rumen bacteria in continuous culture. Journal of Dairy Science 58, 164516159.CrossRefGoogle ScholarPubMed
John, A. & Ulyatt, M. J. (1984) Measurement of protozoa, using phosphatidyl choline, and of bacteria, using nucleic acids, in the duodenal digesta of sheep fed chaffed lucerne hay (Medicago sativa L.) diets. Journal of Agricultural Science, Cambridge 102, 3344.CrossRefGoogle Scholar
Jouany, J. P. (1989) Effects of diet on populations of rumen protozoa in relation to fibre digestion. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 5974 [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Jouany, J. P., Demeyer, D. I. & Grain, J. (1988) Effect of defaunating the rumen. Animal Feed Science and Technology 21, 229265.CrossRefGoogle Scholar
Krebs, G. A., Leng, R. A. & Nolan, J. V. (1989) Microbial biomass and production rates in the rumen of faunated and fauna-free sheep on low protein fibrous feeds with or without nitrogen supplementation. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 295299 [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Leng, R. A. (1982) Dynamics of protozoa in the rumen of sheep. British Journal of Nutrition 48, 399415.CrossRefGoogle ScholarPubMed
Leng, R. A. (1989) Dynamics of protozoa in the rumen. In The Roles of Protozoa and Fungi in Ruminan Digestion pp. 5158 [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Leng, R. A., Dellow, D. & Waghorn, G. (1986) Dynamics of large ciliate protozoa in the rumen of cattle fed on diets of freshly cut grass. British Journal of Nutrition 56, 455462.CrossRefGoogle ScholarPubMed
Leng, R. A., Nolan, J. V., Cumming, G., Edwards, S. R. & Graham, C. A. (1984) The effects of monensin on the pool size and turnover rate of protozoa in the rumen of sheep. Journal of Agricultura1 Science, Cambridge 102, 609613.CrossRefGoogle Scholar
Ling, J. R. (1990) Digestion of bacterial cell walls in the rumen. In The Rumen Ecosystem. The Microbial Metabolism and its Regulation, pp. 8390 [Hoshino, S., Onodera, R., Minato, H. and Itabashi, H., editors]. Tokyo: Japan Scientific Societies Press.Google Scholar
Ling, J. R. & Buttery, P. J. (1978) The simultaneous use of ribonucleic acid, 35S, 2, 6-diaminopimelic acid and 2-aminoethylphosuhonic acid as markers of microbial nitrogen entering duodenum of sheep. British Journal o Nutrition 39, 165179.CrossRefGoogle ScholarPubMed
Mackie, R. I., Gilchrist., F. M. C., Robberts., A. M., Hannah., P. E. & Schwartz, H. M. (1978) Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. Journal of Agricultural Science, Cambridge 90, 241254.CrossRefGoogle Scholar
Michaiowski, T. & Harmeyer, J. (1983) Selective outflow of protozoa from the rumen of sheep. In Protein Metabolism and Nutrition, Vol. 2, pp. 292294 [Pion, R., Arnal, M. and Bonin, D., editors]. Paris: INRA.Google Scholar
Mitchell, E. L. & Gauthier, J. (1981) Advanced Continuous Simulation Language. User Guide/Reference Manual, 3rd ed. Concord: Mitchell and Gauthier Ass.Google Scholar
Murphy, M. R., Baldwin, R. L. & Koong, L. J. (1982) Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science 55, 411421.CrossRefGoogle ScholarPubMed
Neal, H. D., St, C., Dijkstra, J. & Gill, M. (1992) Simulation of nutrient digestion, absorption and outflow in the rumen: model evaluation. Journal of Nutrition 122, 22572272.CrossRefGoogle ScholarPubMed
Nolan, J. V. (1989) Implications of protozoa and fungi for the protein nutrition of ruminants. In The Roles o Protozoa and Fungi in Ruminant Digestion, pp. 211221 [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Oldham, J. D. & Tamminga, S. (1980) Amino acid utilization by dairy cows. 1. Methods of varying amino acid supply. Livestock Production Science 7, 437452.CrossRefGoogle Scholar
Owens, F. N. & Goetsch, A. L. (1986) Digesta passage and microbial protein synthesis. In Control of Digestion and Metabolism in Ruminants, pp. 196223 [Milligan, L.P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs: Prentice-Hall.Google Scholar
Pirt, S. J. (1965) The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society London, Series B 163, 224231.Google ScholarPubMed
Pirt, S. J. (1975) Principles of Microbe and Cell Cultivation. Oxford: Blackwell Scientific Publications.Google Scholar
Prins, R. A. & VanHoven, W. Hoven, W. (1977) Carbohydrate fermentation by the rumen ciliate Isotricha prostoma. Protistologica 13, 549556.Google Scholar
Punia, B. S., Leibholz, J. & Faichney, G. J. (1987) The role of rumen protozoa in the utilization of paspalum (Paspalum dilatatum) hay by cattle. British Journal of Nutrition 57, 395406.CrossRefGoogle ScholarPubMed
Reichl, J. R. & Baldwin, R. L. (1976) A rumen linear programming model for evaluation of concepts of rumen microbial function. Journal of Dairy Science 59, 439454.CrossRefGoogle ScholarPubMed
Robinson, P. H., Sniffen, C. J. & Van Soest, P. J. (1985) Influence of level of feed intake on digestion and bacterial yield in the forestomachs of dairy cattle. Canadian Journal of Animal Science 65, 437444.CrossRefGoogle Scholar
Robinson, P. H., Tamminga, S. & Van Vuuren, A. M. (1987) Influence of declining level of feed intake and varying the proportion of starch in the concentrate on rumen ingesta quantity, composition and kinetics of ingesta turnover in dairy cows. Livestock Production Science 17, 3162.Google Scholar
Russell, J. B. & Dombrowski, D. B. (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Applied and Environmental Microbiology 39, 604610.CrossRefGoogle ScholarPubMed
Slyter, L. L., Oltjen, R. R., Kern, D. L. & Blank, F. C. (1970) Influence of type and level of grain and diethylstilbestrol on the rumen microbial population of steers fed all-concentrate diets. Journal of Animal Science 31, 9961002.CrossRefGoogle ScholarPubMed
Stein, W. D. (1986) Transport and Diffusion Across Cell Membranes. Orlando: Academic Press.Google Scholar
Steinhour, W. D., Stokes, M. R., Clark, J. H., Rogers, J. A. & Davis, C. L. (1982) Estimation of the proportion of non-ammonia-nitrogen reaching the lower gut of the ruminant derived from bacterial and protozoal nitrogen. British Journal of Nutrition 48, 417431.CrossRefGoogle ScholarPubMed
Tamminga, S., Van Vuuren, A. M., Van derKoelen, C. J. Koelen, C. J., Ketelaar, R. S. & Van derTogt, P. L. Togt, P. L. (1990) Ruminal behaviour of structural carbohydrates, non-structural carbohydrates and crude protein from concentrate ingredients in dairy cows. Netherlands Journal of Agricultural Science 38, 513526.CrossRefGoogle Scholar
Thornley, J. H. M. & Johnson, I. R. (1990) Plant and Crop Modelling. A Mathematical Approach to Plant and Crop Physiology. Oxford: Clarendon Press.Google Scholar
Vance, R. D., Preston, R. L., Klosterman, E. W. & Cahill, V. R. (1972) Utilization of whole shelled and crimped corn grain with varying proportions of corn silage by growing-finishing steers. Journal of Animal Science 35, 598605.CrossRefGoogle Scholar
Van Hoven, W. & Prins, R. A. (1977) Carbohydrate fermentation by the rumen ciliate Dasytricha ruminantium. Protistologica 13, 599606.Google Scholar
Veira, D. M. (1986) The role of ciliate protozoa in nutrition of the ruminant. Journal of Animal Science 63, 15471560.CrossRefGoogle ScholarPubMed
Wallace, R. J. & Cotta, M. A. (1988) Metabolism of nitrogen-containing compounds. In The Rumen Microbial Ecosystem, pp. 217249 [Hobson, P. N., editor]. London: Elsevier Science Publishers.Google Scholar
Weller, R. A. & Pilgrim, A. F. (1974) Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system. British Journal of Nutrition 32, 341351.CrossRefGoogle ScholarPubMed
Whitelaw, F. G., Eadie, J. M., Bruce, L. A. & Shand, W. J. (1984) Microbial protein synthesis in cattle given roughage-concentrate and all-concentrate diets: the use of 2,6-diaminopimelic acid, 2-aminoethylphosphonic acid and 35S as markers. British Journal of Nutrition 52, 249260.CrossRefGoogle ScholarPubMed
Williams, A. G. (1979) The selectivity of carbohydrate assimilation by the anaerobic rumen ciliate Dasytricha ruminantium. Journal of Applied Bacteriology 47, 511520.CrossRefGoogle ScholarPubMed
Williams, A. G. (1986) Rumen holotrich protozoa. Microbiological Reviews 50, 2549.CrossRefGoogle Scholar
Williams, A. G. (1989) Metabolic activities of rumen protozoa. In The Roles of Protozoa and Fungi in Ruminan Digestion, pp. 97126 [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Williams, A. G. & Coleman, G. S. (1988) The rumen protozoa. In The Rumen Microbial Ecosystem, pp. 77128 [Hobson, P. N., editor]. London: Elsevier Science Publishers.Google Scholar