Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T02:40:33.611Z Has data issue: false hasContentIssue false

Seasonal variation in the effect of dietary RNA on criteria of energy homoeostasis in the rat

Published online by Cambridge University Press:  08 December 2008

D. J. Heaf
Affiliation:
Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Gwynedd, LL57 2UW
D. G. Peers
Affiliation:
Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Gwynedd, LL57 2UW
J. I. Davies
Affiliation:
Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Gwynedd, LL57 2UW
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. RNA was administered to rats as part of a meal while standardizing food intake and minimizing the effects of psychological stress and diurnal metabolic rhythms. It was demonstrated that circulating levels of glucose and free fatty acids (FFA) in the animals, which were deprived of food for 48 h, were responsive to orally administered caffeine.

2. Inclusion of RNA in the diet slightly but consistently reduced the normal postprandial hyperglycaemia. Its effect on plasma FFA was variable although statistically significant in some experiments. The differences between RNA- and control-fed animals were not attributable to differences in the rate of passage of digesta along the gastrointestinal tract.

3. Evidence was obtained that the variability in the FFA response was related to a seasonally-dependent change in the state of the animals. The synchronizer (‘Zeitgeber’) responsible for this change was not identified and no satisfactory way of suppressing its effect was found.

4. The present findings, taken in conjunction with those of previous workers, suggest that there is a seasonal influence on the sympathetic nervous system manifesting itself as a variable susceptibility to arousal or excitation.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Bamard, E. A. (1969). Nature, Lond. 221, 340.Google Scholar
Barrett, A. M. (1964). Br. J. Pharmac. 22, 577.Google Scholar
Bellet, S., Sandberg, H., Feinberg, L. & Decastro, O. (1968). Coffein und anders Methylxanthine, p. 181 [Heirn, F. and Arnmon, H. P. T., editors]. Stuttgart: Schattaner Verlag.Google Scholar
Bizzi, A. & Garattini, S. (1966). In Methods of Drug Evaluation, p. 68 [Mantegazza, P. and PiCcihd, F., editors]. Amsterdam, N. Holland.Google Scholar
Blackard, W. G. & Cameron, T. (1967). Metabolism 16, 91.CrossRefGoogle Scholar
Boright, H. A., Engel, F. L., Lebovitz, H. E., Kostyo, J. L. & White, J. E. (1962). Biochem. J. 83, 95.CrossRefGoogle Scholar
Bowering, J., Calloway, H., Margen, S. & Kaufmann, N. A. (1970). J. Nutr. 100, 249.CrossRefGoogle Scholar
Canellakis, E. S. (1957). J. biol. Chem. 227, 701.CrossRefGoogle Scholar
Carlson, L. A. & Olsson, A. G. (1974). In Modern trends in cardiolofy, p. 405 [Oliver, M. F., editor]. London: Butterworths.Google Scholar
Cooper, G. M., Dunning, W. F. & Greer, S. (1972). Cancer Res. 32, 390.Google Scholar
Cuendat, G. S., Loten, E. G., Cameron, D. P., Renold, A. E. & Marliss, E. B. (1975). Am. J. Physiol. 228, 276.CrossRefGoogle Scholar
Cuthbertson, W. F. S. (1957). Proc. Nutr. Soc. 16, 70.CrossRefGoogle Scholar
Dole, V. P. (1956). J. clin. Invest. 35, 150.CrossRefGoogle Scholar
Dole, V. P. (1962). J. biol. Chem. 237, 2758.CrossRefGoogle Scholar
Eastwood, M. A., Kirkpatrick, J. R., Mitchell, W. D., Bone, A. & Hamilton, T. (1973). Br. med. J. iv, 392.CrossRefGoogle Scholar
Edgren, R. A. (1963). J. Atherscler. Res. 3, 206.CrossRefGoogle Scholar
Fink, K., Henderson, R. B. & Fink, R. M. (1952). J. biol. Chem. 197, 441.CrossRefGoogle Scholar
Friedman, L., Glaser, O. G., Brown, N. L. & Pariser, E. R. (1971). Toxic. appl. Pharmac. 18, 239.CrossRefGoogle Scholar
Garattini, S. & Bizzi, A. L. (1966). Pharmac. Rev. 18, 243.Google Scholar
Gilgen, A., Maickel, R. P., Nikodijevic, O. & Brodie, B. B. (1962). Life. Sci. 12, 709.CrossRefGoogle Scholar
Hashimoto, S. & Chuman, Y. (1963). J. Vitam. 9, 227.CrossRefGoogle Scholar
Haugaard, E. S., Frantz, K. B. & Haugaard, N. (1977). Proc Natl. Acad. Sci. 74, 2339.CrossRefGoogle Scholar
Havel, R. J. & Goldfien, A. (1959). J. Lipid Res. I, 102.CrossRefGoogle Scholar
Heaf, D. J. & Davies, J. I. (1976). Br. J. Nutr. 36, 381.CrossRefGoogle Scholar
Heim, F. & Ammon, H. P. T. (1968). In Coffein und undere Methylxanthine [editors]. Stuttgart: Schattauer Verlag.Google Scholar
Hetenyi, G. & Ishiwata, K. (1968). Am. J. Physiol. 214, 1333.CrossRefGoogle Scholar
Jouanneteau, J., Favier, R. & Perez, G. (1975). Compt. Rend. Soc. Biol. 6, 1526.Google Scholar
Kihlberg, R. (1972). A. Rev. Microbiol. 26, 427.CrossRefGoogle Scholar
Krebs, C. J. & Myers, J. H. (1974). Adv. Ecol. Res. 8, 267.CrossRefGoogle Scholar
Kritchevsky, D., Tepper, S. A. & Story, J. A. (1974). Nutr. Rep. int. 9, 301.Google Scholar
Kutscher, C. L. (1971). Physiol. Behaviour 7, 283.CrossRefGoogle Scholar
Layne, E. (1957). Merh. Enzym. 3, 450.Google Scholar
O'Hea, E. K., Aldis, E. A., Skidmore, G. B-Smith, B. H., Stevenson, S., Strongithram, D. & Stuart, G. C. E. (1974). Comp. Biochem. Physiol. 48A, 21.CrossRefGoogle Scholar
Peers, D. G. (1974). Effects of nucleic acid derivatives on carbohydrate metabolism in mammals. Ph D Thesis, University of Wales.Google Scholar
Peers, D. G., Heaf, D. J. & Davies, J. I. (1973). Proc. FEBS Special Meeting on Industrial Aspecfs of Biochemistry, Dublin, Abstr. 116.Google Scholar
Pessacq, M. T. & Gagliardino, J. J. (1975). Metabolism 24, 737.CrossRefGoogle ScholarPubMed
Prończuk, A., Lubszyński, S. & Bartnik, J. (1972). Nutr. Abstr. Revs. 42, 951, Abstr. 5745.Google Scholar
Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. (1963). Lancet i, 785.CrossRefGoogle Scholar
Roll, P. M., Brown, G. B., Di Carlo, F. J. & Schultz, A. S. (1949). J. biol. Chem. 180, 333.CrossRefGoogle Scholar
Segal, S., Foley, J. & Wyngaarden, J. B. (1957). Proc. Soc. expt. Biol. Med. 95, 551.CrossRefGoogle Scholar
Sloviter, H. A., Iteka, M. & Sakata, K. (1964). Am. J. Physiol. 207, 407.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed. pp. 329, 472. Ames Iowa: Iowa State University Press.Google Scholar
Southgate, D. A. T. (1973). Proc. Nutr. Soc. 32, 131.CrossRefGoogle Scholar
Spector, A. A. & Hoak, J. C. (1975). Science, N. Y. 190, 490.CrossRefGoogle Scholar
Steffens, A. B. (1976). Am. J. Physiol. 230, 1411.CrossRefGoogle Scholar
Steinberg, D. (1966). Pharmac. Rev. 18, 217.Google Scholar
Thomas, A. J. (1970). In Automation, Mechanisation and Data Handling in Microbiology, p. 109 [Baillie, A. & Gilbert, R. J., editors]. London: Academic Press.Google Scholar
Thorp, J. M. & Waring, W. S. (1962). Nature, Lond. 194, 948.CrossRefGoogle Scholar
Trenchard, P. M. (1975). Clinica chim. Acta 65, 139.CrossRefGoogle Scholar
Tsai, A. C., Elias, J., Kelley, J. J., Lin, R. -S. C. & Robson, J.-R. K. (1976). J. Nutr. 106, 118.CrossRefGoogle Scholar
Waslien, C. I., Calloway, D. H. & Margen, S. (1968). Am. J. clin. Nutr. 21, 892.CrossRefGoogle Scholar
Wells, A. F. & Ershoff, B. H. (1961). J. Nutr. 74, 87.CrossRefGoogle Scholar
Young, D. A. B. (1965). J. Physiol., Lond. 178, 530.CrossRefGoogle Scholar