Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T02:00:45.473Z Has data issue: false hasContentIssue false

Rumen digestion and urinary excretion of purine derivatives in response to urea supplementation of sodium-treated straw fed to sheep

Published online by Cambridge University Press:  09 March 2007

J. Balcells
Affiliation:
Departamento de Producción Animal y Ciencia de los alimentos, Facultad de Veterinaria, Miguel Servet 177, Zaragoza 50013, Spain
J. A. Guada
Affiliation:
Departamento de Producción Animal y Ciencia de los alimentos, Facultad de Veterinaria, Miguel Servet 177, Zaragoza 50013, Spain
C. Castrillo
Affiliation:
Departamento de Producción Animal y Ciencia de los alimentos, Facultad de Veterinaria, Miguel Servet 177, Zaragoza 50013, Spain
J. Gasa
Affiliation:
Departamento de Producción Animal y Ciencia de los alimentos, Facultad de Veterinaria, Miguel Servet 177, Zaragoza 50013, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study examined the effect of urea-N supplementation of a N-deficient diet on digestion and metabolism in the rumen. Five Rasa Aragonesa ewes, each fitted with a rumen cannula, were offered alkali-treated barley straw ad lib. alone or supplemented continuously via the cannula with four levels of urea-N (3, 6, 9 and 12 g/d). Rumen NH3 concentrations increased in response to urea infusion (6–128 mg/l; P < 0.001). At the highest level of rumen NH3 concentration there was a significant increase, compared with the unsupplemented treatment, in dry matter (DM) intake (846–1206 g/d; P < 0.001) and apparent digestibility of DM (0.38–0.43), organic matter (0.38–0.45) and neutral-detergent fibre (0.41–0.49; P < 0.01). Rumen outflow rates of particulate matter and potential DM disappearances, assessed using nylon bags, were not affected by the experimental treatments, although fractional rate of DM disappearance increased significantly with increasing levels of urea infusion (2.4–4.6 per h). Urinary excretion of total purine derivatives increased with N supplementation, although the response was exclusively due to an increase in allantoin excretion (26.9–66.4 mg/kg live weight (W)0.75 per d; P < 0.001). Xanthine, hypoxanthine and uric acid excretion rates were constant, averaging 1.8 (SE 0.17); 5.4 (SE 0.21) and 7.2 (SE 0.36) mg/kg W0.75 per d respectively. The maintenance of a minimum rumen NH3 concentration (approximately 50 mg/l) was necessary to avoid significant reductions in DM intake and fermentation rate. Higher levels, however, may further increase microbial N flow at the duodenum, as suggested by the response in urinary allantoin excretion over the range of rumen NH3 concentrations.

Type
Rumenal Metabolism of Purines
Copyright
Copyright © The Nutrition Society 1993

References

Adebowale, E. A., ØSrskov, E. R. & Hotten, P. M. (1989). Effect of alkaline hydrogen peroxide on degradation of straw using either sodium hydroxide or gaseous ammonia as source of alkali. Animal Production 48, 553559.CrossRefGoogle Scholar
Ali, C. S., Mason, V. C. & Waagepetersen, J. (1977). The voluntary intake of pelleted diets containing sodium hydroxide-treated wheat straw by sheep. 1. The effect of the alkali concentration in the straw. Zeitschrift, für Tierphysiologie, Tierernährung und Futtermittelkunde 39, 173–173.CrossRefGoogle Scholar
Alvarez, F., Dixon, R. M. & Preston, T. R. (1984). Minimum rumen ammonia requirements for rumen digestion of NaOH treated maize cobs and Penisetum purpureum. Tropical Animal Production 9, 299–299.Google Scholar
Antoniewicz, A. M., Heineman, W. W. & Hanks, E. M. (1980). The effects of changes in the intestinal flow of nucleic acids on allantoin excretion in the urine of sheep. Journal of Agricultural Science, Cambridge 95, 395–395.CrossRefGoogle Scholar
Balcells, J., Guada, J. A., Castrillo, C. & Gasa, J. (1991). Urinary excretion of allantoin and allantoin precursors after different rates of purine infusion into the duodenum. Journal of Agricultural Science, Cambridge 116, 309–309CrossRefGoogle Scholar
Carriedo, J. A., Gil, A. & San Primitivo, F. (1978). Ajuste lineal con puntos singulares por metodos iterativos aplicacion biológica (Lineal fitting with break points by an iterative method and biological application). Anules de la Fucultad de Veterinaria de Leon. 24, 139–139.Google Scholar
Chen, X. B., Ørskov, E. R. & Hovell, F. D. DeB. (1990 b). Excretion of purine derivatives by ruminants: effect exogenous nucleic acid supply on purine derivative excretion by sheep. British Journal of Nutrition 63, 131–131.CrossRefGoogle ScholarPubMed
Chen, X. B., Ørskov, E. R. & Hovell, F. D. DeB. (1990 b). Excretion of purine derivatives by ruminants: endogenous excretion, differences between cattle and sheep. British Journal of Nutrition 63, 121129.CrossRefGoogle ScholarPubMed
Coombe, J. B., Dinius, D. A. & Wheeler, W. E. (1979). Effect of alkali treatment on intake and digestion of barley straw by beef steers. Journal of Animal Science 49, 171–171.CrossRefGoogle Scholar
Deryche, G., Vanbelle, B. & Vanbelle, M. (1985). Contribution à l'étude de la valorisation de la paille dans l'alimentation des ruminants par les traitements aux alcalis. 1. Étude fondamentale du traitement á la soude caustique (Improvement of straw in the feeding of ruminants by treatments with alkalis. 1. Basic study of caustic soda treatment). Publication no. 43 du laboratoire de Biochimie de la Nutrition, p. 21. Louvain la Neuve,Google Scholar
Dewhurst, R. J. & Webster, A. J. F. (1988). Effects of manipuluting rumen, fermentation and outflow rate in sheep on microbial protein yield as estimated from allantoin escretion. Animal Production 46, 490 Abstr.Google Scholar
Elliott, R. C. & Topps, J. H. (1963). Nitrogen metabolism of African cattle fed diets with an adequate energy, low protein content. Nature 197, 668–668.CrossRefGoogle Scholar
Erdman, R. A., Proctor, G. H. & Vandersall, J. H. (1986). Effect of rumen ammonia concentration on in situ rate and extent of digestion of feedstuffs. Journal of Dairy Science 69, 2312–2312.CrossRefGoogle ScholarPubMed
Fadlalla, B. & Kay, R. N. B. (1987). Effects of particle size on digestion of hay by sheep. Journal of Agricultural Science, Cambridge 109, 551–551.CrossRefGoogle Scholar
Fijihara, T., Ørskov, E. R., Redds, P. J. & Kile, D. J. (1987). The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. Journal of Agricultural Science, Cambridge 109, 7–7.CrossRefGoogle Scholar
Giesecke, D., Stangassiner, M. & Tiemeyer, W. (1984). Nucleic acid digestion and urinary purine metabolites in sheep nourished by intragastric nutrition. Canadian Journal of Animal Science 64, Suppl., 144–144.CrossRefGoogle Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage Fibre Analysis. Agriculture Handbook no. 379. Washington, DC: Agricultural Research Service, US Department of Agriculture.Google Scholar
Grovum, W. L. & Williams, V. J. (1973). Rate of passage of digesta in sheep. British Journal of Nutrition 30, 313–313.CrossRefGoogle ScholarPubMed
Guada, J. A., Balcells, J., Gasa, J. & de Vega, A. (1990). Response of urinary purine derivatives to urea supplementation of hydroxide-treated straw. Animal Production 50, 580581 Abstr.Google Scholar
Harrison, D. G. & McAllan, A. B. (1979). Factors affecting microbial growth yield in the reticulo-rumen. In Digestive Physiology and Metabolism in Ruminants, pp. 205–205 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.Google Scholar
Hume, I. D., Moir, R. J. & Somers, M. (1970). Synthesis of microbial protein in the rumen. 1. Influence of the level of nitrogen intake. Australian Journal qf Agricultural Research 21, 283304.CrossRefGoogle Scholar
Kang-Meznarich, J. H. & Broderick, G. A. (1981). Effects of incremental urea supplementation on ruminal ammonia concentration and bacterial protein formation. Journal of Animal Science 51, 422431,CrossRefGoogle Scholar
Laurent, F. & Vignon, B. (1979). Variations de l'excrétion urinaire d'azote total, d'urée et d'allantoine chez le mouton et chez le bouc (Variations in urinary excretion of total-N, urea and allantoin in wethers and male goats). Bulletin de l'ENSAIA de Nancy 21, 115124.Google Scholar
Lindberg, J. E. (1991). Nitrogen and purine metabolism in preruminant and ruminant goat kids given increasing amounts of ribonucleic acids. Animal Feed Science and Technology 35, 213226.CrossRefGoogle Scholar
Lindberg, J. E. & Jacobson, K. G. (1990). Nitrogen and purine metabolism at varying energy and protein supplies in sheep sustained on intragastric infusion. British Journul of Nutrition 64, 359370.CrossRefGoogle ScholarPubMed
McAllan, A. B. & Smith, R. H. (1973). Degradation of nucleic acids in the rumen. British Journal of Nutrition 29, 331345.CrossRefGoogle ScholarPubMed
McDonald, I. (1981). A revised model for the estimation of protein degradability in the rumen. Journal of Agricultural Science, Cambridge 96, 251252.CrossRefGoogle Scholar
Maloiy, G. M. O., Kay, R. N. B., Goodall, E. D. & Topps, J. H. (1970). Digestion and nitrogen metabolism in sheep and red deer given large or small amounts of water and protein. British Journal of Nutrition 24, 843–843.CrossRefGoogle ScholarPubMed
Mehrez, A. Z., Ørskov, E. R. & McDonald, I. (1977). Rates of rumen fermentation in relation to ammonia concentration. British Journal of Nutrition 38, 437–437.CrossRefGoogle ScholarPubMed
Milne, J. A., Christie, A. & Russel, A. J. F. (1979). The effects of nitrogen and energy supplementation on the voluntary intake and digestion of heather by sheep. Journal of Agricultural Science, Cambridge 92, 635–635.CrossRefGoogle Scholar
Neutze, S. A., Kellaway, R. C. & Faichney, G. J. (1986). Kinetics of nitrogen transfer across the rumen wall of sheep given a low-protein roughage. British Journal of Nutrition 56, 497–497.CrossRefGoogle Scholar
Ørskov, E. R. (1982). Protein Nutrition in Ruminants. London: Academic Press.Google Scholar
Ørskov, E. R. & Grubb, D. A. (1978). Validation of new systems for protein evaluation in ruminants by testing the effect of urea supplementation on intake and digestibility of straw with or without sodium hydroxide treatment. Journal of Agricultural Science, Cambridge 91, 483486.CrossRefGoogle Scholar
Ørskov, E. R. & McDonald, J. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92, 499503.CrossRefGoogle Scholar
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition 32, 199208.CrossRefGoogle ScholarPubMed
Saxena, S. K., Otterby, J. D., Donker, J. D. & Good, A. L. (1971). Effects of feeding alkali-treated oat straw supplemented with soybean meal or non-protein nitrogen on growth of lambs and rumen liquor parameters. Journal of Animal Sciences 33, 485–485.CrossRefGoogle ScholarPubMed
Sibanda, S., Topps, J. H., Storm, E. & Ørskov, E. R. (1982). The excretion of allantoin by ruminants in relation to protein entering to abomasum. Proceedings of the Nutrition Society 41, 75A.Google Scholar
Slyter, L. L., Satter, L. D. & Dinius, D. A. (1979). Effect of ruminal ammonia concentration on nitrogen utilization by steers. Journal of Animal Science 48, 906912.CrossRefGoogle Scholar
Song, M. K. & Kennelly, J. J. (1990). Ruminal fermentation pattern, bacterial population and ruminal degradation of feed ingredients as influenced by ruminal ammonia concentration. Journal of Animal Science 68, 1110–1110.CrossRefGoogle ScholarPubMed
Steel, R. G. & Torrie, H. J. (1960). Principles and Procedures in Statistics. New York: McGraw-Hill.Google Scholar
Storm, E. & Ørskov, E. R. (1983). The nutritive value of rumen micro-organisms in ruminants I. Large-scale isolation and chemical composition of rumen micro-organisms. British Journal of Nutrition 50, 463470.CrossRefGoogle ScholarPubMed
Technicon Instruments Co. Inc. (1972). Technicon Clinical Method no. 01. Basingstoke: Technicon Instruments Co. Inc.Google Scholar
Uden, P., Coluci, P. E. & Van Soest, P. J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta rate of passage studies. Journal of the Science of Food and Agriculture 31, 625–625.CrossRefGoogle ScholarPubMed
Wanapat, M., Sundstøl, F. & Garmo, T. H. (1985). A comparison of alkali treatment methods to improve the nutritive value of straw. I. Digestibility and metabolizability. Animal Feed Science and Technology 12,295309.CrossRefGoogle Scholar
Wanapat, M., Sundstøl, F. & Hall, J. M. R. (1986). A comparison of alkali treatment methods to improve the nutritive value of straw. II. In sacco and in vitro degradation relative to in vivo digestibility. Animal Feed Science and Technology 14, 215220.CrossRefGoogle Scholar
Williams, L. H., David, D. I. & Ismaa, O. (1962). The determination of chromium oxide in faeces samples by atomic absorption spectrophotometry. Journal of Agricultural Science, Cambridge 59, 381385.CrossRefGoogle Scholar
Xande, A. & Demarquilly, C. (1983). Influence du traitement mécanique et chimie à la soude (NaOH) sur la valeur alimentaire des pailles de certale mesurée sur moutons (Effect of mechanical treatment and chemical treatment with NaOH on the feeding value of cereal straw estimated with sheep). Annales du Zootechnie 32, 341356.CrossRefGoogle Scholar
Young, E. G. & Conway, C. F. (1942). On the estimation of allantoin by the Rimini-Schryver reaction. Journal of Biological Chemistry 142, 839845.CrossRefGoogle Scholar