Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T04:50:53.021Z Has data issue: false hasContentIssue false

The role of rumen protozoa in the utilization of paspalum (Paspalum dilatatum) hay by cattle

Published online by Cambridge University Press:  09 March 2007

B. S. Punia
Affiliation:
Department of Animal Husbandry, University of Sydney, Camden, NSW 2570, Australia
Jane Leibholz
Affiliation:
Department of Animal Husbandry, University of Sydney, Camden, NSW 2570, Australia
G. J. Faichney
Affiliation:
CSIRO, Division of Animal Production, PO Box 239, Blacktown, NSW 2148, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1.Six Friesian heifers (250 kg live weight) with permanent cannulas in the rumen and abomasum were allocated at random into two groups of three. One group was treated with Teric GN9 (ICI (Aust.) Ltd) to defaunate the animals during the first two of the four periods of the experiment, after which they were refaunated. The second group was treated with Teric at the end of the first two periods. The dietary treatments were: paspalum (Paspalum dilatatum) hay (4.1 kg/d) given alone and the hay supplemented with urea (20 g/kg dry matter).

2. Defaunation was not complete but the approximate volume of protozoa in the rumen of treated animals was less than 6% of that in the untreated animals.

3. The amount of organic matter (OM) digested in the stomach was lower (P < 0.01) in animals with reduced fauna than in those with normal fauna. There were reductions in both the apparent OM digestibility in the total tract (from 0.56 to 0.52, P < 0.01) and the proportion of the digestible OM digested in the rumen (from 0.82 to 0.79, not significant) of animals with reduced fauna. Apparent digestibilities of acid-detergent fibre and neutral-detergent fibre were significantly lower (P < 0.01) in animals with reduced fauna.

4. The amount of nitrogen disappearing from the stomach was significantly higher (P < 0.01) with the urea supplement; effects due to concentrations of protozoa were not significant. The flow of non-ammonia-N from the abomasum was higher (P < 0.05) in animals with reduced fauna than in animals with normal fauna. The flows of bacterial N from the abomasum and the efficiencies of bacterial N synthesis were not significantly affected by the treatments. N retention was higher (P < 0.01) in animals receiving the urea supplement but differences due to protozoa were not significant.

5. Protozoal contribution to the microbial N flowing from the rumen of animals with normal fauna was estimated to be 24 and 27% with and without the urea supplement respectively.

6. Concentrations of rumen-fluid ammonia-N were reduced (P < 0.05) and those of volatile fatty acids were increased (P < 0.01) with reduction in protozoal numbers. Molar proportions of propionic acid increased (P < 0.05) and of butyric acid decreased (P < 0.01) with reduced rumen fauna.

7. Rumen water volume was lower (P < 0.05) and the mean retention time of indigestible acid-detergent lignin tended to be higher in animals with reduced fauna. Rumen dry-matter pool and mean retention time of CrEDTA were not significantly different between treatments.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Abou Akkada, A. R. & El-Shazly, K. (1964). Applied Microbiology 12, 384390.CrossRefGoogle Scholar
Bauchart, D., Legay-Carmier, F., Dorean, M. & Jouany, J. P. (1986). Reproduction, Nutrition et Développement 26, 309310.CrossRefGoogle Scholar
Becker, E. R. & Everett, R. C. (1930). American Journal of Hygiene 11, 362370.Google Scholar
Binnerts, W. T., Van't Klooster, A. Th. & Frens, A. M. (1968). Veterinary Record 82, 470.Google Scholar
Bird, P. R. (1974). Australian Journal of Agricultural Research 25, 631642.CrossRefGoogle Scholar
Bird, S. H., Hill, M. K. & Leng, R. A. (1979). British Journal of Nutrition 42, 8187.CrossRefGoogle Scholar
Bird, S. H. & Leng, R. A. (1978). British Journal of Nutrition 40, 163167.CrossRefGoogle Scholar
Bird, S. H. & Leng, R. A. (1984). British Journal of Nutrition 52, 607611.CrossRefGoogle Scholar
Borhami, B. E. A., El-Shazly, K., Abou Akkada, A. R. & Ahmed, I. A. (1967). Journal of Dairy Science 50, 16541660.CrossRefGoogle Scholar
Broad, T. E. & Dawson, R. M. C. (1975). Biochemical Journal 146, 317328.CrossRefGoogle Scholar
Burggraaf, W. & Leng, R. A. (1980). New Zealand Journal of Agricultural Research 23, 287291.CrossRefGoogle Scholar
Campling, R. C., Freer, M. & Balch, C. C. (1962). British Journal of Nutrition 16, 115124.CrossRefGoogle Scholar
Chalmers, M. I., Davidson, J., Eadie, J. M. & Gill, J. C. (1968). Proceedings of the Nutrition Society 27, 29A.Google Scholar
Chaney, A. L. & Marbach, E. P. (1962). Clinical Chemistry 8, 130132.CrossRefGoogle Scholar
Christiansen, W. C., Kawashima, R. & Burroughs, W. (1965). Journal of Animal Science 24, 730734.CrossRefGoogle Scholar
Coleman, G. S. (1967). Journal of General Microbiology 47, 449464.CrossRefGoogle Scholar
Coleman, G. S. (1985). Journal of Agricultural Science, Cambridge 104, 349360.CrossRefGoogle Scholar
Coleman, S. W. & Barth, K. M. (1977). Journal of Animal Science 45, 11801187.CrossRefGoogle Scholar
Conrad, H. R., Hibbs, J. W., Pounden, W. D. & Sutton, T. S. (1950). Journal of Dairy Science 33, 585592.CrossRefGoogle Scholar
Eadie, J. M. (1962). Journal of General Microbiology 29, 563578.CrossRefGoogle Scholar
Eadie, J. M. & Gill, J. C. (1971). British Journal of Nutrition 26, 155167.CrossRefGoogle Scholar
Eadie, J. M. & Hobson, P. N. (1962). Nature 193, 503505.CrossRefGoogle Scholar
Faichney, G. J. (1975). In Digestion and Metabolism in the Ruminant, pp. 277291 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Faichney, G. J. (1980). Australian Journal of Agriculatural Research 31, 11291137.CrossRefGoogle Scholar
Faichney, G. J. (1986). In Control of Digestion and Metabolism in Ruminants, pp. 173195 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
Faichney, G. J. & Griffiths, D. A. (1978). British Journal of Nutrition 40, 7182.CrossRefGoogle Scholar
Goering, H. K. & Van soest, P. J. (1970). Forage Fiber Analysis, Agricultural Handbook no. 37a, Washington, DC: Agricultural Research Service, United States Department of Agriculture.Google Scholar
Goetsch, A. L., Estell, R. E. & Galyean, M. L. (1984). Proceedings, Western Section, American Society of Animal Science 35, 280283.Google Scholar
Hibbs, J. W. & Conrad, H. R. (1958). Journal of Dairy Science 41, 12301247.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York and London: Academic Press.Google Scholar
Jouany, J. P. & Senaud, J. (1979). Annales De Recherches Vétérinaires 10, 261263.Google Scholar
Jouany, J. P. & Senaud, J. (1982). Reproduction, Nutrition et Développement 22, 735752.CrossRefGoogle Scholar
Jouany, J. P. & Thivend, P. (1983). In 4th International Symposium on Protein Metabolism and Nutrition, vol. 2, Les Colloques de I' INRA no. 16, pp. 287290. Clermont-Ferrand, France: INRA.Google Scholar
Jouany, J. P., Zainab, B., Senaud, J., Groliere, C. A., Grain, J. & Thivend, P. (1981). Reproduction Nutrition et Développement 21, 871884.CrossRefGoogle Scholar
Kayouli, C., Demeyer, D. I., Van Nevel, C. J. & Denooven, R. (1984). Animal Feed Science and Technology 10, 165172.CrossRefGoogle Scholar
Klopfenstein, T. J., Purser, D. B. & Tyznik, W. J. (1966). Journal of Animal Science 25, 765773.CrossRefGoogle Scholar
Kurihara, Y., Eadie, J. M., Hobson, P. N. & Mann, S. O. (1968). Journal of General Microbiology 51, 267288.CrossRefGoogle Scholar
Kurihara, Y., Takechi, T. & Shibata, F. (1978). Journal of Agricultural Science, Cambridge 90, 373382.CrossRefGoogle Scholar
Leng, R. A., Gill, M., Kempton, T. J., Rowe, J. B., Nolan, J. V., Stachiw, S. J. & Preston, T. R. (1981). British Journal of Nutrition 46, 371384.CrossRefGoogle Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Australian Journal of Agricultural Research 23, 321330.CrossRefGoogle Scholar
Lovelock, L. K. A., Buchanan-Smith, J. G. & Forsberg, C. W. (1982). Canadian Journal of Animal Science 62, 299303.CrossRefGoogle Scholar
Males, J. R. & Purser, D. B. (1970). Applied Microbiology 19, 485490.CrossRefGoogle Scholar
Mathers, J. C. & Miller, E. L. (1980). British Journal of Nutrition 43, 503514.CrossRefGoogle Scholar
Moore, S. (1963). Journal of Biological Chemistry 238, 235237.CrossRefGoogle Scholar
Orpin, C. G. (1984). Animal Feed Science and Technology 10, 121143.CrossRefGoogle Scholar
Orpin, C. G. & Letcher, A. J. (1984). Animal Feed Science and Technology 10, 145153.CrossRefGoogle Scholar
Pounden, W. D. & Hibbs, J. W. (1950). Journal of Dairy Science 33, 639644.CrossRefGoogle Scholar
Punia, B. S. & Leibholz, J. (1984). Canadian Journal of Animal Science 64, suppl., 2425.CrossRefGoogle Scholar
Punia, B. S., Leibholz, J. & Faichney, G. J. (1984 a). Proceedings of the Australian Society of Animal Production 15, 733.Google Scholar
Punia, B. S., Leibholz, J. & Faichney, G. J. (1984 b). Proceedings of the Australian Society of Animal Production 15, 732.Google Scholar
Smith, R. H. (1984). Proceedings of the Nutrition Society 43, 6368.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics, 2nd ed. New York: McGraw Hill.Google Scholar
Takahashi, F. & Kametaka, M. (1976). Japanese Journal of Zootechnical Science 47, 192196.Google Scholar
Ushida, K., Jouany, J. P., Lassalas, B. & Thivend, P. (1984). Canadian Journal of Animal Science 64, Suppl., 2021.CrossRefGoogle Scholar
Veira, D. M., Ivan, M. & Jui, P. Y. (1983). Journal of Dairy Science 66, 10151022.CrossRefGoogle Scholar
Veira, D. M., Ivan, M. & Jui, P. Y. (1984). Canadian Journal of Animal Science 64, Suppl., 2223.CrossRefGoogle Scholar
Warner, A. C. I. (1962). Journal of General Microbiology 28, 129146.CrossRefGoogle Scholar
Whitelaw, F. G., Eadie, J. M., Bruce, L. A. & Shand, W. G. (1984). British Journal of Nutrition 52, 261275.CrossRefGoogle Scholar
Williams, P. P. & Dinusson, W. E. (1973). Journal of Animal Science 36, 588591.CrossRefGoogle Scholar