Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T06:20:41.907Z Has data issue: false hasContentIssue false

The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat

Published online by Cambridge University Press:  09 March 2007

M. M. Jepson
Affiliation:
Nutrition Research Unit, London School of Hygiene and Tropical Medicine, St Pancras Hospital, 4 St Pancras Way, LondonNW1 2PE
P. C. Bates
Affiliation:
Nutrition Research Unit, London School of Hygiene and Tropical Medicine, St Pancras Hospital, 4 St Pancras Way, LondonNW1 2PE
D. J. Millward
Affiliation:
Nutrition Research Unit, London School of Hygiene and Tropical Medicine, St Pancras Hospital, 4 St Pancras Way, LondonNW1 2PE
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. We have investigated the relations between changes in plasma insulin and 3,5,3'-triiodothyronine (T3), and muscle growth and protein turnover in the rat in response to diets of varying protein concentrations.

2. Young rats were fed ad lib. on a control (180 g casein/kg) diet or low-protein diets containing 80, 45 and 0 g casein/kg in four separate experiments. Measurements were made of food intakes, muscle and body-weight growth rates, muscle protein turnover in vivo, plasma insulin, and plasma free and total T3.

3. The food intakes of the 80 and 45 g casein/kg diet groups were variable, with the 80 g casein/kg diet group consuming either the same or more than the controls, and the 45 g casein/kg diet group consuming less or more than the controls. Body-weight and skeletal-muscle growth rates varied with the protein but not energy intakes, which in turn reflected both dietary composition and the food intake, with the hyperphagic 80 g casein/kg diet group of rats growing almost normally and the 0 g casein/kg diet group losing body-weight and muscle mass.

4. Changes in rates of muscle growth were accompanied by parallel changes in rates of protein synthesis and degradation, as well as parallel changes in concentrations of plasma insulin and free T3, to the extent that all these variables were highly correlated with each other.

5. Partial correlation analysis was used to separate interactions between variables. This indicated that dietary energy had no identifiable influence on muscle growth. In contrast dietary protein appeared to stimulate muscle growth directly by increasing muscle RNA content and inhibiting proteolysis, as well as increasing insulin and free T3 levels. Insulin and free T3 stimulated each other as well as muscle protein turnover; insulin stimulating the RNA activity particularly at low insulin levels, free T3 stimulating the RNA content and both hormones stimulating proteolysis.

6. These apparent relations are shown to be consistent in the main part with previous studies of the mechanism of action of insulin and T3 but the possibility cannot be discounted that other anabolic hormones not measured in these studies are involved, particularly in the apparent direct influence of dietary protein on muscle.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

Bernhardt, F. W. & Tomarelli, R. M. (1966). Journal of Nutrition 89, 495500.CrossRefGoogle Scholar
Berthoud, H. R. (1984). Metabolism 33, 1825.CrossRefGoogle Scholar
Brown, J. G., Bates, P. C., Holliday, M. A. & Millward, D. J. (1981). Biochemical Journal 194, 771782.CrossRefGoogle Scholar
Brown, J. G. & Millward, D. J. (1983). Biochimica et Biophysica Acta 757, 182190.CrossRefGoogle Scholar
Brown, J. G., van Bueren, J. & Millward, D. J. (1983). Biochemical Journal 214, 637640.CrossRefGoogle Scholar
Burch, W. M. & Van Wyk, J. J. (1987). American Journal of Physiology 252, E176E182.Google Scholar
Burini, R., Santidrian, S., Moreyra, M., Brown, P., Munro, H. N. & Young, V. R. (1981). Metabolism 30, 679687.Google Scholar
Burman, K. D., Wartofsky, L., Dinterman, R. E., Kesler, P. & Wannemacher, R. W. (1979). Metabolism 28, 805813.Google Scholar
Carter, W. J., van der Weijden Benjamin, W. S. & Faas, F. H. (1984). Biochemical Journal 217, 471476.Google Scholar
Cox, M. D., Dalal, S. S., Heard, C. R. C. & Millward, D. J. (1984). Journal of Nutrition 114, 16091616.CrossRefGoogle Scholar
Coyer, P., Rivers, J. P. W. & Millward, D. J. (1987). British Journal of Nutrition 58, 7385.CrossRefGoogle Scholar
DeMartino, G. N. & Goldberg, A. L. (1978). Proceedings of the National Academy of Sciences, USA 75, 13691373.CrossRefGoogle Scholar
Dodson, M. V., Allen, R. E. & Hossner, K. L. (1985). Endocrinology 117, 2357.CrossRefGoogle Scholar
Edozien, J. C., Niehaus, N., Mar, M.-H., Makoui, T. & Switzer, B. R. (1978). Journal of Nutrition 108, 17671776.Google Scholar
Emery, P. W., Rothwell, N. J. & Stock, M. J. (1983). Bioscience Reports 3, 569575.CrossRefGoogle Scholar
Fajans, S. S. & Floyd, J. C. Jr (1972). In Handbook of Physiology, sect. 7, vol. 1, pp. 473493 [Steiner, D. F. and Freinkel, N., editors]. Washington, DC: American Physiological Society.Google Scholar
Flaim, K. E., Li, J. B. & Jefferson, L. S. (1978). American Journal of Physiology 235, E231E236.Google Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). Biochemical Journal 192, 719723.CrossRefGoogle Scholar
Garlick, P. J., Millward, D. J., James, W. P. T. & Waterlow, J. C. (1975). Biochimica et Biophysica Acta 414, 7184.CrossRefGoogle Scholar
Gavin, L. A. & Moeller, M. (1983). Metabolism 32, 543551.CrossRefGoogle ScholarPubMed
Giugliano, R. & Millward, D. J. (1986). British Journal of Nutrition 57, 139155.Google Scholar
Goldberg, A. L. (1979). Diabetes 28, 1824.CrossRefGoogle Scholar
Goldberg, A. L., Tischler, M., DeMartino, G. & Griffin, G. (1980). Federation Proceedings 39, 3136.Google Scholar
Gurr, M. I., Mawson, R., Rothwell, N. J. & Stock, M. J. (1980). Journal of Nutrition 110, 532542.CrossRefGoogle Scholar
Harri, M. & Brockway, J. M. (1985). British Journal of Nutrition 53, 363372.CrossRefGoogle Scholar
Jefferson, L. S. (1980). Diabetes 29, 487496.CrossRefGoogle Scholar
Jepson, M. M. (1986). Mechanisms of the response of skeletal muscle and liver protein metabolism to dietary protein and endotoxaemia in young rats. PhD Thesis, University of London.Google Scholar
Jepson, M. M., Pell, J. M., Bates, P. C., Broadbent, P. & Millward, D. J. (1988). American Journal of Physiology (In the Press).Google Scholar
Jepson, M. M., Pell, J., Bates, P. & Millward, D. J. (1986). Biochemical Journal 235, 329336.Google Scholar
Landsberg, L. & Young, J. B. (1983). American Journal of Clinical Nutrition 38, 10181024.CrossRefGoogle Scholar
Laurent, B. C., Moldawer, L. L., Young, V. R., Bistrian, B. R. & Blackburn, G. L. (1984). American Journal of Physiology 246, E444E451.Google Scholar
Lunn, P. G. & Austin, S. (1983). Journal of Nutrition 113, 17911802.Google Scholar
McCracken, K. J. & McAllister, A. (1984). British Journal of Nutrition 51, 225234.Google Scholar
MacLennan, P. A., Brown, R. A. & Rennie, M. J. (1987). FEBS Letters 215, 187191.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1962). Journal of Nutrition 78, 255262.Google Scholar
Miller, S. A. (1969). In Mammalian Protein Metabolism, pp. 183227 [Munro, H. N., editor]. New York and London: Academic Press.Google Scholar
Millward, D. J. (1980). In Degradative Processes in Heart and Skeletal Muscle, pp. 161199 [Wildenthal, K., editor]. Amsterdam: North Holland.Google Scholar
Millward, D. J. (1985). In Substrate and Energy Metabolism in Man, pp. 135144 [Halliday, D. and Garrow, J. S., editors]. London and Paris: John Libbey.Google Scholar
Millward, D. J., Bates, P. C., Brown, J. G., Cox, M. C., Giugliano, R., Jepson, M. & Pell, J. (1985). In Intracellular Protein Catabolism, pp. 531542 [Khairallah, E. A.Bond, J. S. and Bird, J. W. C., editors]. New York: Alan Liss.Google Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). Biochemical Journal 156, 185188.Google Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochemical Journal 150, 235243.Google Scholar
Millward, D. J., Nnanyelugo, D. O. & Garlick, P. J. (1974). British Journal of Nutrition 32, 127142.Google Scholar
Millward, D. J., Odedra, B. & Bates, P. C. (1983). Biochemical Journal 216, 583587.CrossRefGoogle Scholar
Millward, D. J. & Waterlow, J. C. (1978). Federation Proceedings 37, 22832290.Google Scholar
Mitch, W. E. & Clark, A. S. (1984). Biochemical Journal 222, 579586.CrossRefGoogle Scholar
Odedra, B., Bates, P. C. & Millward, D. J. (1983). Biochemical Journal 214, 617627.CrossRefGoogle Scholar
Odedra, B., Dalal, S. S. & Millward, D. J. (1982). Biochemical Journal 202, 363368.Google Scholar
Okajima, F. & Ui, M. (1978). American Journal of Physiology 234, E106E111.Google Scholar
Palmer, R. M. (1987). The role of prostaglandins in the hormonal control of protein turnover. PhD Thesis, University of Aberdeen.Google Scholar
Palmer, R. M., Bain, P. A. & Reeds, P. J. (1985). Biochemical Journal 230, 117123.Google Scholar
Preedy, V. R. & Garlick, P. J. (1986). Bioscience Reports 2, 177183.Google Scholar
Prewett, T. E. A., D'Ercole, A. J., Switzer, B. R. & Van Wyk, J. J. (1982). Journal of Nutrition 112, 144150.Google Scholar
Rothwell, N. J. & Stock, M. J. (1980). Proceedings of the Nutrition Society 39, 20A.Google Scholar
Rothwell, N. J., Stock, M. J. & Tyzbir, R. S. (1982). Journal of Nutrition 112, 16631672.Google Scholar
Rothwell, N. J., Stock, M. J. & Tyzbir, R. S. (1983). Metabolism 32, 257261.CrossRefGoogle Scholar
Sato, K. & Robbins, J. (1981). Journal of Clinical Investigation 68, 475483.Google Scholar
Sawaya, A. L. & Lunn, P. G. (1985). British Journal of Nutrition 53, 175181.Google Scholar
Silva, J. E. & Larsen, P. R. (1983). Nature 305, 712713.Google Scholar
Smallridge, R. C., Glass, A. R., Wartofsky, L., Latham, K. R. & Burman, K. D. (1982). Metabolism 31, 538542.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). In Statistical Methods, 6th ed., pp. 381418. Ames, Iowa: Iowa State University Press.Google Scholar
Swick, R. W. & Gribskov, C. L. (1983). Journal of Nutrition 113, 22892294.CrossRefGoogle Scholar
Tischler, M. E. (1981). Life Sciences 28, 25692576.CrossRefGoogle Scholar
Tulp, O. L., Krupp, P. P., Danforth, E. Jr. & Horton, E. S. (1979). Journal of Nutrition 109, 13211322.CrossRefGoogle Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and the Whole Body. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Yahya, Z. A. H., Bates, P. C., Dalal, S. S., Morell, D., Holder, A. T., Taylor, A. & Millward, D. J. (1986). Proceedings of the Nutrition Society 45, 107A.Google Scholar
Young, R. A., Braverman, L. E. & Rajatanavin, R. (1982). Endocrinology 110, 16071612.Google Scholar
Zeman, R. J., Bernstein, P. L., Ludemann, R. & Etlinger, J. D. (1986). Biochemical Journal 240, 269272.CrossRefGoogle Scholar