Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T09:05:51.708Z Has data issue: false hasContentIssue false

The role of dietary protein in hepatic lipogenesis in the young rat

Published online by Cambridge University Press:  09 March 2007

G. R. Herzberg
Affiliation:
Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland A 1B 3X9Canada
Minda Rogerson
Affiliation:
Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland A 1B 3X9Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of varying dietary levels of casein (40–140 g/kg) on hepatic lipogenesis and the levels of hepatic fatty acid synthetase (FAS), glucose-6-phosphate dehydrogenase (EC 1.1.1.49; G6PD), malic enzyme (EC 1.1.1.40; ME), citrate cleavage enzyme (EC 4.1.3.8;CCE), acetyl CoA carboxylase (EC 6.4.1.2; AcCx), glucokinase (EC 2.7.1.2; GK), and pyruvate dehydrogenase (PDH) was examined in young, growing rats.

2. The activities of AcCx, FAS, G6PD and in vivo fatty acid synthesis were generally found to increase with increased dietary protein.

3. The levels of GK and PDH were not related to dietary protein.

4. ME decreased with increasing dietary protein.

5. The results demonstrate a dissociation between hepatic fatty acid synthesis and ME and suggest that when rats consume low-protein diets the NADPH needed for fatty acid synthesis is generated primarily by ME but that as the level of dietary protein is increased the contribution of ME is reduced while that of the phosphogluconate pathway becomes more important.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Barnes, R. H., Bates, M. J. & Maack, J. E. (1946), J. Nutr. 32, 535.CrossRefGoogle Scholar
Bruckdorfer, K. R., Khan, I. H. & Yudkin, J. (1972), Biochem. J. 129, 439.CrossRefGoogle Scholar
Clarke, S. D., Romsos, D. R. & Leveille, G. A. (1977 a). J. Nutr. 107, 1170.CrossRefGoogle Scholar
Clarke, S. D., Romsos, D. R. & Leveille, G. A. (1977 b), J. Nutr. 107, 1277.CrossRefGoogle Scholar
Clarke, S. D., Romsos, D. R. & Leveille, G. A. (1977 c). J. Nutr. 107, 1468.CrossRefGoogle Scholar
Cohen, A. M. & Teitelbaum, A. (1966), Israel J. med. Sci. 2, 727.Google Scholar
Frenkel, R. (1975), Curr. Topics Cell. Reg. 9, 157.CrossRefGoogle Scholar
Frenkel, R., Stark, M. J. & Stafford, J. (1972), Biochem. Biophys. Res. Commun. 49, 1684.CrossRefGoogle Scholar
Gibson, D. M. & Hubbard, D. D. (1960), Biochem. Biophys. Res. Commun. 3, 351.CrossRefGoogle Scholar
Gibson, D. M., Lyons, R. T., Scott, D. F. & Muto, Y. (1972), Adv. Enzyme Reg. 10, 187.CrossRefGoogle Scholar
Goa, J. (1953), Scund. J. clin. Lab Invest. 5, 218.CrossRefGoogle Scholar
Gove, C. D. & Hems, D. A. (1978), Biochem. J. 170, 1.CrossRefGoogle Scholar
Hegted, D. M. & Chang, Y-O. (1965), J. Nutr. 85, 159.CrossRefGoogle Scholar
Hill, R., Webster, W. W., Linazasoro, J. M. & Chaikoff, I. L. (1960), J. Lipid Res. 1, 150.CrossRefGoogle Scholar
Lohr, G. W. & Walker, H. O. (1971), In Methods Of Enzymatic Analysis, vol. 2, p. 636 [Bergmeyer, H. V., editor]. New York: Academic Press.Google Scholar
Lowenstein, J. M. (1971), J. biol. Chem. 246, 629.CrossRefGoogle Scholar
Masoro, E. J., Chaikoff, I. L., Chernick, S. S. & Felts, J. M. (1950), J. biol. Chem. 185, 845.CrossRefGoogle Scholar
National Research Council (1978), Nutrient Requirements of Laboratory Animals 3rd ed. Washington, DC: National Research Council.Google Scholar
Peret, J., Chanes, M., Cota, J. & Macaire, I. (1975), J. Nutr. 105, 1525.CrossRefGoogle Scholar
Pilkis, S. J. (1975), Meth. Enzym. 42, 31.CrossRefGoogle Scholar
Romsos, D. R. & Leveille, G. A. (1974 a). Adv. Lipid Res. 12, 97.CrossRefGoogle Scholar
Romsos, D. R. & Leveille, G. A. (1974 b). Biochim. biophys. Acta 360, 1.CrossRefGoogle Scholar
Schimke, R. T. (1962), J. biol. Chem. 237, 459.CrossRefGoogle Scholar
Srere, P. A. (1959), J. biol. Chem. 234, 2544.CrossRefGoogle Scholar
Stark, M. J. & Frenkel, R. (1974), Life Sci. 14, 1563.CrossRefGoogle Scholar
Stark, M. J., Thompson, B. & Frenkel, R. (1975), Arch. Biochem. Biophys. 166, 174.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1960), Principles and Procedures of Statistics. New York: McGraw Hill.Google Scholar
Taylor, S. I., Muckhejee, C. & Jungas, R. L. (1973), J. biol. Chem. 248, 73.CrossRefGoogle Scholar
Triscari, J., Hamilton, H. G. & Sullivan, A. C. (1978), J. Nutr. 108, 815.CrossRefGoogle Scholar
Vaughan, D. A. & Winders, R. L. (1964), Am. J. Physiol. 206, 1081.CrossRefGoogle Scholar
Volpe, J. J. & Vagelos, P. R. (1976), Physiol. Rev. 56, 399.CrossRefGoogle Scholar
Walajtys, E. I., Gottesman, D. P. & Williamson, J. R. (1974), J. biol. Chem. 249, 1857.CrossRefGoogle Scholar
Wieland, O. H., Patzelt, C. & Loffler, G. (1972), Eur. J. Biochem. 26, 426..CrossRefGoogle Scholar
Yeh, Y. Y. & Leveille, G. A. (1969), J. Nutr. 98, 356.CrossRefGoogle Scholar
Yeh, Y. Y., Leveille, G. A. & Wiley, J. H. (1970), J. Nutr. 100, 917.CrossRefGoogle Scholar