Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T00:55:10.237Z Has data issue: false hasContentIssue false

Riboflavin deficiency in man: effects on haemoglobin and reduced glutathione in erythrocytes of different ages

Published online by Cambridge University Press:  09 March 2007

Hilary J. Powers
Affiliation:
Department of Human Nutrition, London School of Hygiene and Tropical Medicine, London WC1E 7HT
D. I. Thurnham
Affiliation:
Department of Human Nutrition, London School of Hygiene and Tropical Medicine, London WC1E 7HT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Erythrocytes (RBC) from control and marginally riboflavin-deficient subjects were fractionated into nine fractions using a discrete density gradient.

2. Glutathione reductase (NAD(P)H: glutathione oxidoreductase; EC 1.6.4.2) activity and aspartate aminotransferase (EC 2.6.1.1) activity (with and without the appropriate co-enzymes) reduced glutathione, methaemoglobin, sulphaemoglobin and oxyhaemoglobin and susceptibility to peroxide were measured in RBC in the different fractions.

3. Glutathione reductase and aspartate aminotransferase activities and concentrations of reduced glutathione and oxyhaemoglobin all declined with age, while melhaemoglobin, sulphaemoglobin and susceptibility to peroxide increased with age.

4. The only significant differences noted in the RBC from marginally-riboflavin-deficient subjects by comparison with controls, were lower glutathione reductase activities and higher concentrations of methaemoglobin.

5. The role of riboflavin in those sytems controlling RBC integrity is discussed.

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Alfrey, C. P. & Lane, M. (1970). Semin. Haematol. 7, 49.Google Scholar
Beutler, E., Duron, O. & Kelly, B. (1963). J. lab. clin. Med. 61, 882.Google Scholar
Beutler, E. & Srivastava, S. K. (1970). Nature, Lond. 226, 759.CrossRefGoogle Scholar
Borun, E. R., Figueroa, W. G. & Perry, S. M. (1957). J. clin. Invest. 36, 676.CrossRefGoogle Scholar
Brewer, G. J., Tarlov, A. R., Kellermeyer, R. C. & Alving, A. S. (1962). J. lab. clin. Med. 59, 905.Google Scholar
Chapman, R. G. & Schaumberg, L. (1967). Brit. J. Haemat. 13, 665.CrossRefGoogle Scholar
Cohen, G. & Hochstein, P. (1963). Biochemistry, New York 2, 1420.CrossRefGoogle Scholar
Crosby, W. D. & Houchin, D. N. (1957). Blood 12, 1132.CrossRefGoogle Scholar
Department of Health and Social Security (1979). Rep. Hlth Soc. Subj. no. 16.Google Scholar
Desai, I. D. & Tappel, A. L. (1963). J. lipid Res. 4, 204.CrossRefGoogle Scholar
Eldjarn, L. & Bremer, J. (1962). Biochem. J. 84, 286.CrossRefGoogle Scholar
Evelyn, K. A. & Malloy, H. T. (1938). J. biol. Chem. 126, 655.CrossRefGoogle Scholar
Fischer, I. & Walter, H. (1971). J. lab. clin. Med. 78, 739.Google Scholar
Goldstein, B. D. & McDonagh, E. M. (1975). Clin. Res. 23, 247A.Google Scholar
Gross, S. (1976). Semin. Heamatol. 13, 187.Google Scholar
Hassan, F. M. (1978). Erythrocyte pathophysiology of riboflavin deficiency in rats. PhD Thesis, University of London.Google Scholar
Hassan, F. M. & Thurnham, D. I. (1977). Int. Z. Vitaminforsch. 47, 349.Google Scholar
Hill, A. S. Jr, Hart, A., Cartwright, G. E. & Wintrobe, M. M. (1964). J. clin. Invest. 43, 17.CrossRefGoogle Scholar
Jacob, H. S. & Jandl, J. H. (1962). J. clin. Invest. 41, 779.CrossRefGoogle Scholar
Jaffe, E. R. (1959). J. clin. Invest. 38, 1555.CrossRefGoogle Scholar
Kellermeyer, R. W., Tarlov, A. R., Brewer, G. J., Carson, P. E. & Alving, A. S. (1962). J. Am. med. Assoc. 180, 388.CrossRefGoogle Scholar
Krimsky, I. & Racker, E. (1952). J. biol. Chem. 198, 721.CrossRefGoogle Scholar
Levander, O. A., Morris, V. C. & Ferretti, R. J. (1977 a) J. Nutr. 107, 363.CrossRefGoogle Scholar
Levander, O. A., Morris, V. C. & Ferretti, R. J. (1977 b). J. Nutr. 107, 373.CrossRefGoogle Scholar
Levander, O. A., Morris, V. C. & Ferretti, R. J. (1978). J. Nutr. 108, 145.CrossRefGoogle Scholar
Levander, O. A., Morris, V. C., Higgs, D. J. & Ferretti, R. J. (1975). J. Nutr. 105, 1481.CrossRefGoogle Scholar
Mutsuki, T., Yubisui, T., Tomoda, A., Yoneyama, Y., Yakeshita, M., Hirano, M., Kobayashi, K. & Tani, Y. (1978). Br. J. Haemat. 39, 523.CrossRefGoogle Scholar
Powers, H. J. & Thurnham, D. I. (1976). Nutr. Metab. 21 (Suppl. 1), 155.CrossRefGoogle Scholar
Powers, H. J. & Thurnham, D. I. (1980 a). Proc. Nutr. Soc. 39, 17A.Google Scholar
Powers, H. J. & Thurnham, D. I. (1980 b). Biochem. Soc. Trans. 8, 195.CrossRefGoogle Scholar
Powers, H. J., Thurnham, D. I. & Dugdale, A. E. (1981). J. Theor. Biol. 88, 685.CrossRefGoogle Scholar
Scott, E. M. & McGraw, J. G. (1962). J. biol. Chem. 237, 249.CrossRefGoogle Scholar
Thurnham, D. I. & Stephen, J. M. L. (1975). Xth Int. Cong. Nutr.Kyoto, 1975 Abstr. 6304 p. 303.Google Scholar
Turner, B. M., Fisher, R. A. & Harris, M. (1974). Clin. Chim. Acta 50, 85.CrossRefGoogle Scholar
Voss, M. D., Vorsanger, E. & Spear, P. W. (1964). Clin. Chim. Acta 10, 21.Google Scholar
Wilkinson, J. H., Baron, D. N., Moss, D. W. & Walker, P. G. (1972). J. clin. Path. 25, 940.CrossRefGoogle Scholar