Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T20:34:17.312Z Has data issue: false hasContentIssue false

Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets

Published online by Cambridge University Press:  09 March 2007

J. W. Hilton
Affiliation:
Department of Nutrition, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
J. L. Atkinson
Affiliation:
Department of Nutrition, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The physiological response of rainbow trout (Salmo gairdneri) reared on different levels of available carbohydrate in practical trout diets having the same levels of energy and nitrogen for 16–24 weeks was determined.

2. Weight gain was significantly reduced in trout reared on the highest level of available carbohydrate, 210 g cerelose (α-glucose)/kg, and there was a significant linear regression (R2 0.88) of dietary carbohydrate on weight gain.

3. Liver: body-weight values and liver glycogen levels increased in relation to increased dietary carbohydrate.

4. Liver glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activity increased and liver phosphoenolpyruvate carboxykinase (EC 4.1.1.32) activity decreased per kg body-weight of fish with increasing dietary carbohydrate. However, no significant effect was noted on the activity of these liver enzymes above a dietary cerelose level of 140 g/kg.

5. Liver fructose diphosphatase (EC 3.1.3.11) activity increased with increasing dietary carbohydrate has been interpreted as meaning a recycling of triosephosphate to glucose-6-phosphate.

6. Dietary carbohydrate level had no significant effect on the liver pyruvate kinase (EC 2.7.1.40) activity, the rate of glucose utilization or the percentage conversion of [14C]alanine to glucose in the plasma of trout.

7. The results indicate that rainbow trout have a limited ability to adapt to increased dietary carbohydrate and a level in excess of 140 g/kg of the diet is not efficiently utilized.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Ballard, F. J. & Hanson, R. W. (1967). Biochem. J. 104, 866.CrossRefGoogle Scholar
Bligh, M. E. G. & Dyer, W. G. (1959). Can. J. Biochem. Physiol. 37, 911.CrossRefGoogle Scholar
Buhler, D. R. & Halver, J. E. (1961). J. Nutr. 74, 307.CrossRefGoogle Scholar
Carroll, N. V., Longley, R. W. & Roe, J. H. (1956). J. biol. Chem. 22, 583.CrossRefGoogle Scholar
Cho, C. Y. & Slinger, S. J. (1979). In Finfish Nutrition and Fishfeed Technology vol. 2, p. 239 [Halver, J. E. and Tiews, K. editors]. Berlin, Satz und Druck: H. Heenemann GmbH & Co.Google Scholar
Cho, C. Y., Slinger, S. J. & Bayley, H. S. (1976). J. Nutr. 106, 1547.CrossRefGoogle Scholar
Clegg, K. M. (1956). J. Sci. Fd Agri. 7, 40.CrossRefGoogle Scholar
Cowey, C. B., de la Higuera, M. & Adron, J. W. (1977). Br. J. Nutr. 38, 385.CrossRefGoogle Scholar
Cowey, C. B., Knox, D., Walton, M. J. & Adron, J. W. (1977). Br. J. Nutr. 38, 463.CrossRefGoogle Scholar
Cowey, C. B. & Sargent, J. R. (1979). In Fish Physiology, vol. 8, p. 1 [Hoar, W. S., Randall, D. J. and Brett, J. R. editors]. New York, Academic Press.Google Scholar
Dixon, D. G. & Hilton, J. W. (1981). J. Fish Biol. (In the Press).Google Scholar
Freedland, R. A. (1967). J. Nutr. 91, 489.CrossRefGoogle Scholar
Furuichi, M. & Yone, Y. (1980). Bull. Jap. Soc. Sci. Fish 46, 225.CrossRefGoogle Scholar
Hilton, J. W. & Dixon, D. G. (1982). J. Fish Diseases (In the Press).Google Scholar
Horwitz, W., Chichilo, P. & Reynolds, H. (editors) (1970). Official Methods of Analysis of the Official Analytical Chemists, 11th ed. p. 1015. Washington, DC: Association of Official Analytical Chemists.Google Scholar
Lin, H., Romsos, D. R., Tack, P. I. & Leveille, G. A. (1978). Comp. Biochem. Physiol. 59, 189.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Far, N. J. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Luquet, P. (1971). Ann Hydrobiol. 2, 175.Google Scholar
National Research Council. (1973). Nutrient requirements of animals no. 11, p. 57. Nutrient Requirements of Trout, Salmon and Catfish. Washington, DC: National Academy of Sciences.Google Scholar
Newsholme, E. A. & Crabtree, B. (1973). FEBS Letts 7, 195.CrossRefGoogle Scholar
Opie, L. H. & Newsholme, E. A. (1967). Biochem. J. 103, 391.CrossRefGoogle Scholar
Palmer, T. N. & Ryman, B. E. (1972). J. Fish Biol. 4, 311.CrossRefGoogle Scholar
Phillips, A. M. Jr. & Brockway, D. R. (1959). Prog. Fish. Cult. 21, 3.CrossRefGoogle Scholar
Phillips, A. M. Jr., Tunison, A. V. & Brockway, D. R. (1948). Fish Res. Bull. 11, 48.Google Scholar
Pieper, A. & Pfeffer, E. (1979). In Finfish Nutrition and Fishfeed Technology, vol. 1, p. 209 [Halver, J. E. and Tiews, K. editors]. Berlin, Satz und Druck: H. Heenemann GmbH & Co.Google Scholar
Pogson, C. I. (1968). Biochem. Biophys. Res. Commun. 30, 297.CrossRefGoogle Scholar
Pogson, C. I. & Smith, S. A. (1975). Biochem. J. 152, 401.CrossRefGoogle Scholar
Shimeno, S., Hosokawa, H. & Takeda, M. (1979). In Finfish Nutrition and Fishfeed Technology. vol. 1, p. 127 [Halver, J. E. and Tiews, K. editors]. Berlin, Satz und Druck: H. Heenemann GmbH & Co.Google Scholar
Smith, R. R. (1975). Proc. Cornell Nutr. Conf. 1975 p. 43.Google Scholar
Somogyi, M. (1945). J. biol. Chem. 160, 69.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Principles and Procedures of Statistics. p. 481. New York: McGraw Hill Book Co.Google Scholar