Article contents
Response of diamine oxidase and other plasma copper biomarkers to various dietary copper intakes in the rat and evaluation of copper absorption with a stable isotope
Published online by Cambridge University Press: 09 March 2007
Abstract
There is a lack of agreement on index of Cu status and reliable and sensitive biomarkers are still required. The purpose of this present work was to assess in rats the sensitivity of diamine oxidase (DAO) activity, a recently proposed biomarker, to modifications in dietary Cu intake in comparison with other plasma biomarkers of Cu status. We also evaluated the effect of Cu dietary level on Cu and Zn intestinal absorption. Results showed that plasma Cu and plasma caeruloplasmin were significantly decreased at day 8 compared with the control group (7·4 mg Cu/kg diet) while DAO activity was significantly decreased at day 12 of the deficient diet (0·61 mg Cu/kg diet). Cu supplementation (35 mg Cu/kg diet) had no effect on any of the studied biomarkers of Cu status. In Cu-deficient rats plasma Cu and DAO activities were normalized 4 d after return to the control diet while caeruloplasmin was normalized later, at day 11. Apparent absorption values (%) of total Cu or 65Cu isotope were significantly increased in the Cu-deficient rats compared with the other groups and similar in the control and the Cu-supplemented groups. The urinary excretion of total Cu or 65Cu isotope were increased in the Cu-supplemented group compared with the other two groups. Both apparent absorption and urinary excretion of total Zn or 67Zn isotope remained unchanged in the three experimental groups. In conclusion, DAO activity seemed to be less sensitive to Cu deficiency than plasma Cu or caeruloplasmin concentrations. The present study also showed a significant increase in Cu intestinal absorption with dietary Cu restriction but no decrease with Cu supplementation in the rat.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © The Nutrition Society 2000
References
- 11
- Cited by