Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T09:04:49.920Z Has data issue: false hasContentIssue false

The relationship between the zinc status of pigs and the occurrence of copper- and Zn-binding proteins in liver

Published online by Cambridge University Press:  25 March 2008

I. Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A study has been made by gel filtration techniques of the soluble copper-and zinc-binding proteins in livers from pigs of different Zn status..

2. The distribution of both Cu and Zn between the three fractions isolated was greatly influenced by the Zn status of the animal. In livers from pigs given a Zn-supplemented diet the proportion of either Cu or Zn found in the fraction with a molecular weight of about 12000 (fraction 3) was a direct function of the total liver concentration of the metal. In livers from pigs given a low-Zn diet, only small amounts of Cu or Zn were present in this fraction, regardless of liver Cu content..

3. These results suggest that Zn may be essential for the stabilization of the metal-binding protein in this fraction.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Andrews, P. (1965). Biochem. J. 96, 595.CrossRefGoogle Scholar
Bloomer, L. C. & Sourkes, T. L. (1973). Biochem. Med. 8, 78.CrossRefGoogle Scholar
Bremner, I. & Davies, N. T. (1974). Biochem. Soc. Trans. 2, 425.CrossRefGoogle Scholar
Bremner, I. & Davies, N. T. (1975). Biochem. J. 149, 733.CrossRefGoogle Scholar
Bremner, I., Davies, N. T. & Mills, C. F. (1973). Biochem. Soc. Trans. 1, 982.CrossRefGoogle Scholar
Bremner, I. & Marshall, R. B. (1974 a). Br. J. Nutr. 32, 283.CrossRefGoogle Scholar
Bremner, I. & Marshall, R. B. (1974 b). Br. J. Nutr. 32, 293.CrossRefGoogle Scholar
Buhler, R. H. O. & Kägi, J. H. R. (1974). FEBS Lett. 39, 229.CrossRefGoogle Scholar
Chvapil, M. (1973). Life Sci. 13, 1041.CrossRefGoogle Scholar
Davies, N. T., Bremner, I. & Mills, C. F. (1973). Biochem. Soc. Trans. 1, 985.CrossRefGoogle Scholar
Evans, G. W., Majors, P. F. & Cornatzer, W. E. (1970). Biochem. biophys. Res. Commun. 40, 1142.CrossRefGoogle Scholar
Lal, S. & Sourkes, T. L. (1971). Toxic. appl. Pharmac. 18, 562.CrossRefGoogle Scholar
Lewis, P. K. Jr, Hoekstra, W. G. & Grummer, R. H. (1957). J. Anim. Sci. 16, 578.CrossRefGoogle Scholar
Murthy, L., Klevay, L. M. & Petering, H. G. (1974). J. Nutr. 104, 1458.CrossRefGoogle Scholar
Philip, E. (1973). Intracellular distribution of copper in sheep liver and its response to the administration of copper sulphate. Msc Thesis, University of Aberdeen.Google Scholar
Porter, H. (1974). Biochem. biophys. Res. Commun. 56, 661.CrossRefGoogle Scholar
Rupp, H. & Weser, U. (1974). FEBS Lett. 44, 293.CrossRefGoogle Scholar
Shapiro, J., Morell, A. G. & Scheinberg, I. H. (1961). J. clin. Invest. 40, 1081.Google Scholar
Suttle, N. F. & Mills, C. F. (1966 a). Br. J. Nutr. 20, 135.CrossRefGoogle Scholar
Suttle, N. F. & Mills, C. F. (1966 b). Br. J. Nutr. 20, 149.CrossRefGoogle Scholar
Webb, M. (1972). Biochem. Pharmac. 21, 2751.CrossRefGoogle Scholar