Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T23:44:37.177Z Has data issue: false hasContentIssue false

The relationship between protein turnover and energy balance in lean and genetically obese (ob/ob)mice

Published online by Cambridge University Press:  09 March 2007

B. G. Miller
Affiliation:
Department of Nutrition, School of Biochemical and Physiological Sciences, Southampton University, Southampton SOg 3TU
W. R. Otto
Affiliation:
Department of Nutrition, School of Biochemical and Physiological Sciences, Southampton University, Southampton SOg 3TU
R. F. Grimble
Affiliation:
Department of Nutrition, School of Biochemical and Physiological Sciences, Southampton University, Southampton SOg 3TU
D. A. York
Affiliation:
Department of Nutrition, School of Biochemical and Physiological Sciences, Southampton University, Southampton SOg 3TU
T. G. Taylor
Affiliation:
Department of Nutrition, School of Biochemical and Physiological Sciences, Southampton University, Southampton SOg 3TU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Groups of lean and genetically obese (ob/ob) mice were adapted to varying energy intakes and the rates of total protein turnover in liver, gut and kidney were measured.

2. Lean mice gained less weight when fed above maintenance and lost less weight when fed below maintenance than obese mice.

3. Hepatic protein turnover (mg/d) was sigmoidally related to digestible energy intake in lean mice but showed no significant changes with dietary intake in obese mice.

4. The changes in protein turnover resulted from changes in both the half-lives of protein synthesis and catabolism and in tissue protein content.

5. In the lean mice, protein turnover in kidney and gut was not significantly changed with increasing energy intake until the highest level was reached.

6. The findings suggest that protein turnover may be an important cycle for the regulation of energy balance in mice and that this cycle is impaired in the genetically obese (ob/ob) mice.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Alonzo, L. G. & Maren, T. H. (1955). Am. J. Physiol. 183, 284.CrossRefGoogle Scholar
Apfelbaum, M., Bostarron, J. & Lactis, D. (1971). Am. J. clin. Nutr. 24, 1405.CrossRefGoogle Scholar
Ashworth, A. (1969). Nature, Lond. 223, 407.CrossRefGoogle Scholar
Bates, M. W., Nauss, F., Hagman, N. & Meyer, J. (1955). Am. J. Physiol. 180, 301.CrossRefGoogle Scholar
Bray, G. A. (1972). J. clin. Invest. 51, 637.CrossRefGoogle Scholar
Bray, G. A. & York, D. A. (1971). Physiol. Rev. 51, 598.CrossRefGoogle Scholar
Bronk, J. R. (1963 a). Proc. Natn. Acad. Sci. USA. 50, 524.CrossRefGoogle Scholar
Bronk, J. R. (1963 b). Science, N. Y. 141, 816.CrossRefGoogle Scholar
Cohn, C. & Joseph, D. (1959). Am. J. Physiol. 196, 965.CrossRefGoogle Scholar
Coleman, E. A. (1978). Diabetologia 14, 141.CrossRefGoogle Scholar
Davis, T. R. A. & Meyer, J. (1954). Am. J. Physiol. 177, 222.CrossRefGoogle Scholar
Dubuc, P. (1976). Metabolism 25, 1567.CrossRefGoogle Scholar
Felig, P. & Wahren, J. (1974). Fedn Proc. Fedn Am. Socs exp. Biol. 33, 1092.Google Scholar
Garrow, J. S. (1974). Energy Balance and Obesity in Man. Amsterdam: North Holland.Google Scholar
Golden, M., Waterlow, J. C. & Licou, D. (1977). Am. J. clin. Nutr. 30, 1345.CrossRefGoogle Scholar
Grisolia, S. & Kennedy, J. (1965). Perspective Biol. Med. 9, 578.CrossRefGoogle Scholar
Gulick, A. (1922). Am. J. Physiol. 60, 3.CrossRefGoogle Scholar
Himms-Hagen, J. (1976). A. Rev. Biochem. 45, 315.Google Scholar
Hoch, F. L. (1974). Handbook of Physiology, vol. 3, p. 391. Washington, DC: American Physiology Society.Google Scholar
Jansky, L. (1973). Biol. Rev. 48, 85.CrossRefGoogle Scholar
Lin, P., Rosmos, D. R. & Leveille, G. A. (1977). J. Nutr. 107, 1717.Google Scholar
Masterton, J. P., Lewis, H. E. & Widdowson, E. M. (1957). Br. J. Nutr. 11, 346.CrossRefGoogle Scholar
Miller, B. G., Grimble, R. F. & Taylor, T. G. (1977). Nature, Lond. 266, 184.CrossRefGoogle Scholar
Miller, B. G., Grimble, R. F. & Taylor, T. G. (1978). J. clin. Sci. Mol. Med. 54, 425.Google Scholar
Miller, D. S. & Mumford, P. H. (1967). Am. J. clin. Nutr. 20, 1212.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1962). J. Nutr. 78, 255.CrossRefGoogle Scholar
Millward, D. J. & Garlick, P. J. (1972). Proc. Nutr. Soc. 31, 257.CrossRefGoogle Scholar
Munro, H. N. (1964). In Mammalian Protein Metabolism, vol. 1, p. 249.Google Scholar
Nassett, E. S. (1964). In The Role of Gastrointestinal Tract in Protein Metabolism [Munro, H. N., editor]. Oxford: Blackwell.Google Scholar
Nettleton, J. A. & Hegsted, D. M. (1975). Nutr. Metab. 18, 31.CrossRefGoogle Scholar
Neuman, R. O. (1902). Archs. Hyg. 45, I.Google Scholar
Ohtake, M., Bray, G. A. & Azukizawa, M. (1977). Am. J. Physiol. 233, 110.Google Scholar
Otto, W. R., Taylor, T. G. & York, D. A. (1976). J. Endow. 71, 143.CrossRefGoogle Scholar
Passmore, R. & Durnin, J. V. G. A. (1967). Energy Work and Leisure London: Heinemann.Google Scholar
Pullar, J. D. & Webster, A. J. F. (1974). Br. J. Nutr. 31, 377.CrossRefGoogle Scholar
Schimke, R. T. (1970). In Mammalian Protein Metabolism, vol. 4, p. 177 [Munro, H. N., editor]. New York: Academic Press.CrossRefGoogle Scholar
Silverstone, J. T. (1974). In Obesity, p. 105, [Burland, W.Samuel, P. D. & Yudkin, J., editors]. London: Churchill Livingstone.Google Scholar
Sims, E. A. H., Goldman, R. F., Cluck, G. H., Horton, E. S., Kelleher, P. C. & Rowe, D. W. (1968). Trans. Ass. Am. Physcn 81, 153.Google Scholar
Stirling, J. L. & Stock, M. J. (1973). In Energy Balance in Man, p. 219 [Apfelbaum, M., editor]. Paris: Masson.Google Scholar
Tata, J. R., Ernster, L., Linberg, O., Arheinus, E., Pederson, S. & Hedman, R. (1963). Biochem. J. 85, 408.CrossRefGoogle Scholar
Technicon Instruments Co. Ltd. (1970). Methodology Sheet no. N146. Basingstoke: Technicon Instruments Co. Ltd.Google Scholar
Thurlbey, P. L. & Trayhurn, P. (1978). Br. J. Nutr. 39, 397.CrossRefGoogle Scholar
Trayhurn, P., Thurlbey, P. L. & James, W. P. T. (1977). Nature, Lond. 266, 60.CrossRefGoogle Scholar
Waterlow, J. C. (1968). Lancet ii, 1091.CrossRefGoogle Scholar
York, D. A., Bray, G. A. & Yukimura, Y. (1978). Proc. Natn. Acad. Sci. USA. 75, 477.CrossRefGoogle Scholar
York, D. A., Otto, W. R. & Taylor, T. G. (1978). Comp. Biochem. Physiol. 59B, 59.Google Scholar
Yousef, M. K. & Chaffee, R. R. J. (1970). Proc. Soc. exp. Biol. Med. 133, 801.CrossRefGoogle Scholar
Yousef, M. K. & Johnson, H. D. (1970). Proc. Soc. exp. Biol. Med. 135, 763.CrossRefGoogle Scholar
Yousef, M. K. & Luick, J. R. (1969). Can. J. Physiol. Pharmac. 47, 273.CrossRefGoogle Scholar