Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T03:17:52.812Z Has data issue: false hasContentIssue false

Relationship between hepatic fatty acid oxidation and gluconeogenesis in the fasting neonatal pig

Published online by Cambridge University Press:  09 March 2007

Allan J. Lepine
Affiliation:
Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
Malcolm Watford
Affiliation:
Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
R. Dean BOYD
Affiliation:
Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
Deborah A. Ross
Affiliation:
Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
Dana M. Whitehead
Affiliation:
Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hepatocytes were isolated from sixteen fasting neonatal pigs and used in two experiments: (1) to determine the effect of various factors on the ability for hepatic oxidation of fatty acids and (2) to clarify the relationship between fatty acid oxidation and glucose synthesis. In Expt 1, newborn pigs were either fasted from birth for 24 h or allowed to suck ad lib. for 3 d followed by a 24 h fast. In the presence of pyruvate, oxidation of octanoate (2 mM) was about 30-fold greater than oleate (1 mM) regardless of age, but glucose synthesis was not enhanced beyond that observed for pyruvate alone. Inclusion of carnitine (1 mM), glucagon (100 nM) or dibutryl cAMP (50 μM) in the incubation media did not stimulate either fatty acid oxidation (octanoate or oleate) or glucose synthesis. Extending the period of fasting to 48 h (Expt 2) failed to enhance the fatty acid oxidative capacity or glucose synthesis rate. Likewise, the redox potential of the giuconeogenic substrate (lactate v. pyruvate) did not influence glucose synthesis regardless of the oxidative capacity exhibited for fatty acids. These data indicate that fatty acid oxidative capacity is not the first limiting factor to full expression of gluconeogenesis in hepatocytes isolated from fasted newborn pigs.

Type
Fattry acid Oxidation and Gluconeogesis in the Neonatal Pig
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Bach, A. C. & Babayan, V. K. (1982). Medium-chain triglycerides: an update. American Journal of Clinical Nutrition 36, 950962.CrossRefGoogle ScholarPubMed
Bergmeyer, H. U. & Bernt, E. (1974). Lactate dehydrogenase: UV-assay with pyruvate and NADH. In Methods of Enzymatic Analysis, Vol. 11, pp. 5711579 [Bergmeyer, H. U., editor]. New York: Academic Press.Google Scholar
Berry, M. N. & Friend, D. S. (1969). High-yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. Journal of Cell Biology 43, 506520.CrossRefGoogle Scholar
Bieber, L. L., Markwell, M. A. K., Blair, M. & Helmrath, T. A. (1973). Studies on the development of carnitine palmitoyltransferase and fatty acid oxidation in liver mitochondria of neonatal pigs. Biochiniica et Biophysica Acta 326, 145154.CrossRefGoogle ScholarPubMed
Blumenthal, S. (1983). Stimulation of gluconeogenesis by palmitic acid in rat hepatocytes: evidence that this effect can be dissociated from the provision of reducing equivalents. Metabolism 32, 971976.CrossRefGoogle ScholarPubMed
Boyd, R. D., Moser, B. D., Peo, E. R. Jr. & Cunningham, P. J. (1978). Effect of energy source prior to parturition and during lactation on tissue lipid, liver glycogen and plasma levels of some metabolites in the newborn pig. Journal of Animal Science 47, 874882.CrossRefGoogle ScholarPubMed
Boyd, R. D., Whitehead, D. M. & Butler, W. R. (1985). Effect of exogenous glucagon and free fatty acids on gluconeogenesis in fasting neonatal pigs. Journal of Animal Science 60, 659665.CrossRefGoogle ScholarPubMed
Burton, K. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62, 315323.CrossRefGoogle ScholarPubMed
Chen, R. F. (1967). Removal of fatty acids from serum albumin by charcoal treatment. Journal of Biological Chemistry 242, 173177.CrossRefGoogle ScholarPubMed
Clark, M. G., Filsell, O. H. & Jarrett, I. G. (1976). Gluconeogenesis in isolated intact lamb liver cells: effects of glucagon and butyrate. Biochemical Journal 156, 671680.CrossRefGoogle ScholarPubMed
Cornell, N. W. (1983). Evaluation of hepatocyte quality: cell integrity and metabolic rates. In Isolation, Characterization and Use of Hepafocytes, pp. 1120 [Harris, R. A. and Cornell, N. W., editors]. New York: Elsevier Science Publishing Co.Google Scholar
Duee, P. H., Pegorier, J. P., Peret, J. & Girard, J. (1985). Separate effects of fatty acid oxidation and glucagon on gluconeogenesis in isolated hepatocytes from newborn pigs. Biology of the Neonate 47, 7783.CrossRefGoogle ScholarPubMed
Ferre, P., Pegorier, J. P., Marliss, E. B. & Girard, J. R. (1978). Influence of exogenous fat and gluconeogenic substrates on glucose homeostasis in the newborn rat. American Journal of Physiology 234, E129–136.Google ScholarPubMed
Ferre, P., Pegorier, J. P., Williamson, D. H. & Girard, J. (1979). Interactions in vivo between oxidation of non-esterified fatty acids and gluconeogenesis in the newborn rat. Biochemical Journal 182, 593598.CrossRefGoogle ScholarPubMed
Ferre, P., Satabin, P., El-Manoubi, L., Callikan, S. & Girard, J. (1981). Relationship between ketogenesis and gluconeogenesis in isolated hepatocytes from newborn rats. Biochemical Journal 200, 429433.CrossRefGoogle ScholarPubMed
Gentz, J., Bengtsson, G., Hakkarainen, K. J., Hellstrom, R. & Persson, B. (1970). Metabolic effects of starvation during the neonatal period in the piglet. American Journal of Physiology 218, 662665.CrossRefGoogle ScholarPubMed
Girard, J. & Ferre, P. (1982). Metabolic and hormonal changes around birth. In Biochemical Development of the Fetus and Neonate, pp. 517551 [Jones, C. T., editor]. New York: Elsevier Biomedical Press.Google Scholar
Helmrath, T. A. & Bieber, L. L. (1975). Glucagon stimulation of hepatic gluconeogenesis in neonatal pigs. Proceedings of the Society for Experimental Biology and Medicine 150, 561563.CrossRefGoogle ScholarPubMed
Kasser, T. R., Gahagan, J. H. & Martin, R. J. (1982). Fetal hormones and neonatal survival in response to altered maternal serum glucose and free fatty acid concentrations in pigs. Journal of Animal Science 55, 13511359.CrossRefGoogle ScholarPubMed
Kerner, J., Froseth, J. A., Miller, E. R. & Bieber, L. L. (1984). A study of the acylcarnitine content of sows' colostrum, milk and newborn piglet tissues: demonstration of high amounts of isovalerylcarnitine in colostrum and milk. Journal of Nutrition 114, 854861.CrossRefGoogle ScholarPubMed
Krebs, H. A., Cornell, N. W., Lund, P. & Hems, R. (1974). Isolated liver cells as experimental material. In Regulation of Hepatic Metabolism, pp. 726750 [Lundquist, F. and Tygstrup, N., editors]. New York: Academic Press.Google Scholar
Lepine, A. J. (1988). Metabolic and endocrine factors affecting glucose homeostasis in the fasting neonatal pig. PhD Thesis, Cornell University, Ithaca, NY.Google Scholar
Lepine, A. J., Boyd, R. D. & Welch, J. (1989 a). Effect of colostrum intake on plasma glucose, non-esterified fatty acid and glucoregulatory hormone patterns in the neonatal pig. Domestic Animal Endocrinology 6, 231241.CrossRefGoogle ScholarPubMed
Lepine, A. J., Boyd, R. D., Welch, J. A. & Roneker, K. R. (1989 b). Effect of colostrum or medium-chain triglyceride supplementation on the pattern of plasma glucose, non-esterified fatty acids and survival of neonatal pigs. Journal of Animal Science 67, 983990.CrossRefGoogle ScholarPubMed
Lepine, A. J., Boyd, R. D. & Whitehead, D. M. (1991). Effect of colostrunl intake on hepatic gluconeogenesis and fatty acid oxidation in the neonatal pig. Journal of Animal Science 69, 19661974.CrossRefGoogle ScholarPubMed
Mannaerts, G. P., Debeer, L. J., Thomas, J. & DeSchepper, P. J. (1979). Mitochondria1 and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and isolated hepatocytes from control and clofibrate-treated rats. Journal of Biological Chemistry 254, 45854595.CrossRefGoogle Scholar
Manners, M. J. & Mccred, M. R. (1963). Changes in the chemical composition of sow-reared piglets during the 1st month of life. British Journal of Nutrition 17, 495513.CrossRefGoogle ScholarPubMed
Martin, R. J., Herbein, J. H., Sherritt, G.W. & Wangsness, P. J. (1980). Development of liver metabolism and hormones and metabolites in the perinatal pig. Growth 44, 112.Google ScholarPubMed
Mersmann, H. J. (1971). Glycolytic and gluconeogenic enzyme levels in pre- and postnatal pigs. American Journal of Physiology 220, 12971302.CrossRefGoogle ScholarPubMed
Mersmann, H. J., Goodman, J., Houk, J. M. & Anderson, S. (1972). Studies in the biochemistry of mitochondria and cell morphology in the neonatal swine hepatocyte. Journal of Cell Biology 53, 335347.CrossRefGoogle ScholarPubMed
Mersmdnn, H. J. & Phinney, G. (1973). In vitro fatty acid oxidation in liver and heart from neonatal swine (Sus domesticus). Comparative Biochemistry and Physiology 44B, 219223.Google Scholar
Pegorier, J. P., Duee, R., Assan, R., Peret, J. & Girard, J. (1981). Changes in circulating fuels, pancreatic hormones and liver glycogen concentration in fasting or suckling newborn pigs. Journal of Developmental Phvsiology 3, 203217.Google ScholarPubMed
Pegorier, J. P., Duee, P. H., Girard, J. & Peret, J. (1982). Development of gluconeogenesis in isolated hepatocytes from fasting or suckling newborn pigs. Journal of Nutrition 112, 10381046.CrossRefGoogle ScholarPubMed
Pegorier, J. P., Duee, P. H., Girdrd, J. & Peret, J. (1983). Metabolic fate of non-esterified fatty acids in isolated hepatocytes from newborn and young pigs. Evidence for a limited capacity for oxidation and increased capacity for esterification. Biochemical Journal 212, 9397.CrossRefGoogle Scholar
Pegorier, J. P., Duee, P. H., Nunes, C. S., Peret, J. & Girard, J. (1984). Glucose turnover in unrestrained and unanesthetized 48 h old fasting or post-absorptive newborn pigs. British Journal of Nutrition 52, 277287.CrossRefGoogle ScholarPubMed
Pegorier, J. P., Ferre, P. & Girard, J. (1977). The effects of inhibition of fatty acid oxidation in suckling newborn rats. Biochemical Journal 166, 631634.CrossRefGoogle ScholarPubMed
SAS Institute Inc. (1982).A User's Guide: Statistics. Cary, NC, SAS Institute Inc.Google Scholar
Spector, A. A. & Hoak, J. C. (1969). An improved method for the addition of long-chain free fatty acid to protein solutions. Analytical Biochemistry 32, 297302.CrossRefGoogle ScholarPubMed
Swiatek, K. R., Kipnis, D. M., Mason, G., Chao, K. L. & Cornblath, M. (1968). Starvation hypoglycemia in newborn pigs. American Journal of Physiology 214, 400405.CrossRefGoogle ScholarPubMed
Tedesco, T. A. & Mellman, W. J. (1966). Deoxyribonucleic acid assay as a measure of cell number in preparations from monolayer cell cultures and blood leukocytes. Experimental Cell Research 45, 236258.Google Scholar
Wolfe, R. G., Maxwell, C. V. & Nelson, E. C. (1978). Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig. Journal of Nutrition 108, 16211634.CrossRefGoogle ScholarPubMed