Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-07T06:29:01.271Z Has data issue: false hasContentIssue false

Reactions of proteins with oxidizing lipids

1. Analytical measurements of lipid oxidation and of amino acid losses in a whey protein-methyl linolenate model system

Published online by Cambridge University Press:  07 March 2008

Henrik K. Nlelsen
Affiliation:
Research Department, Nestlé Products Technical Assistance Co. Ltd, CH-1814 La Tour-de-Peilz, Switzerland
J. Löliger
Affiliation:
Research Department, Nestlé Products Technical Assistance Co. Ltd, CH-1814 La Tour-de-Peilz, Switzerland
R. F. Hurrell
Affiliation:
Research Department, Nestlé Products Technical Assistance Co. Ltd, CH-1814 La Tour-de-Peilz, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The reactions between protein-bound amino acids and oxidizing lipid were investigated in a whey protein-methyl linolenate (C18.3)–water model system. The extent of fat oxidation was followed by measuring oxygen uptake, hydroperoxide formation and hydrocarbon (ethane and pentane) formation.

2. Significant losses occurred with lysine (up to 71 %), tryptophan (up to 31 %) and histidine (up to 57%). Methionine was extensively oxidized to its sulphoxide but less than 2% was further oxidized to the sulphone. No other amino acids were affected.

3. Increasing storage temperature (20°, 37°, 55°) resulted in an enhancement of fat oxidation reactions and amino acid degradation.

4. Increasing water activity (0.28, 0.65, 0.90) increased losses of lysine and tryptophan but had no influence on the oxidation of methionine, the level of remaining hydroperoxides or 02 uptake. Hydrocarbons were decreased.

5. Limitation of 02 uptake to 1 mol/mol lipid instead of excess 02 (02 uptake about 2.5 mol/mol lipid in 4 weeks) significantly reduced the degradation of lysine and tryptophan but had less influence on the oxidation of methionine. The level of remaining hydroperoxides was increased but hydrocarbons were unaffected.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Booth, V. H. (1971). Journal of the Science of Food and Agriculture 22, 658666.CrossRefGoogle Scholar
Braddock, R. J. & Durgan, L. R. (1973). Journal of the American Oil Chemists' Society 50, 343374.Google Scholar
Carpenter, K. J. (1960). Biochemical Journal 77, 604610.Google Scholar
Chan, H. W. S. & Levett, G. (1977). Lipids 12, 839840.Google Scholar
Chiba, H., Doy, H., Yoshikawa, M. & Sugimoto, E. (1976). Agricultural and Biological Chemistry 40, 10011010.Google Scholar
Cuq, J.-L., Besancon, P., Chartier, L. & Cheftel, C. (1978). Food Chemistry 3, 85101.CrossRefGoogle Scholar
Dawson, L. E. & Gartner, R. (1983). Food Technology 37, 112116.Google Scholar
Desai, I. D. & Tappel, A. L. (1963). Journal of Lipid Research 4, 204207.Google Scholar
Finley, J. W., Wheeler, E. L. & Witt, S. C. (1981). Journal of Agricultural and Food Chemistry 29, 404407.Google Scholar
Frankel, E. N. (1982). Progress in Lipid Research 22, 133.Google Scholar
Gamage, P. T. & Matsushita, S. (1973). Agricultural and Biological Chemistry 37, 18.Google Scholar
Harrison, B. N., Pla, G. W., Clark, G. A. & Fritz, J. C. (1976). Cereal Chemistry 53, 7884.Google Scholar
Hicks, C. L. (1980). Journal of Dairy Science 63, 11191204.Google Scholar
Hilpert, H., Gerber, H., Amster, H., Pahud, J. J., Ballabriga, A., Arcalist, L., Farriaux, F., de Peyer, E. & Nusslé, D. (1977). In Food and Immunology, vol.13, Swedish Nutrition Foundation Symposium, pp. 182196 [Hambraeus, L., Hansen, L. A. and McFarlane, H., editors]. Stockholm: Alqvista Wilksell International.Google Scholar
Höltemand, A. (1966). Stärke 18, 319328.Google Scholar
Horigome, T. & Miura, M. (1974). Journal of the Agricultural Chemistry Society of Japan 48, 437444.Google Scholar
Hurrell, R. F., Carpenter, K. J., Sinclair, W. J., Otterburn, M. S. & Asquith, R. S. (1976). British Journal of Nutrition 35, 383395.Google Scholar
Hurrell, R. F., Finot, P. A. & Cuq, J. L. (1982). British Journal of Nutrition 47, 191211.Google Scholar
Hurrell, R. F., Finot, P. A. & Ford, J. E. (1983). British Journal of Nutrition 49, 343354.Google Scholar
Kanazawa, K., Danno, G. & Natake, M. (1975). Journal of Nutritional Science and Vitaminology 21, 373382.Google Scholar
Karel, M. (1973). Journal of Food Science 38, 756763.Google Scholar
Karel, M., Schaich, K. & Roy, R. B. (1975). Journal of Agricultural and Food Chemistry 23, 159163.Google Scholar
Khayat, A. & Schwall, D. (1983). Food Technology 37, 130140.Google Scholar
Labuza, T. P. & Bergquist, S. (1983). Journal of Food Science 48, 712715.Google Scholar
Labuza, T. P., Tsuyuki, H. & Karel, M. (1969). Journal of the American Oil Chemists' Society 46, 409416.Google Scholar
Löliger, J. & Jent, A. (1983). American Potato Journal 60, 511525.Google Scholar
Matoba, T., Yoshida, H. & Yonezawa, D. (1982). Agricultural and Biological Chemistry 46, 979986.Google Scholar
Moore, S. (1963). Journal of Biological Chemistry 238, 235237.Google Scholar
Neumann, N. P. (1967). In Methods in Enzymology, vol. 11, Enzyme Structure, pp. 487490 [Hirs, C. H. W., editor]. New York: Academic Press.Google Scholar
Nielsen, H. K., Finot, P. A. & Hurrell, R. F. (1985). British Journal of Nutrition 53, 7586.CrossRefGoogle Scholar
Nielsen, H. K. & Hurrell, R. F. (1985). Journal of the Science of Food and Agriculture (In the Press).Google Scholar
O'Brien, P. J. (1966). Biochemical Journal 101, 12P13P.Google Scholar
Roach, A. G., Sanderson, P. & Williams, D. R. (1967). Journal of the Science of Food and Agriculture 18, 274278.CrossRefGoogle Scholar
Roubal, W. T. (1971). Lipids 6, 6264.Google Scholar
Roubal, W. T. & Tappel, A. L. (1966). Archives of Biochemistry and Biophysics 113, 58.Google Scholar
Spencer, R. L. & Wold, F. (1969). Analytical Biochemistry 32, 185190.Google Scholar
Stine, C. M., Harland, H. A., Coulter, S. T. & Jennes, R. (1954). Journal of Diary Science 37, 202208.Google Scholar
Tannenbaum, S. R., Ahern, M. & Bates, R. P. (1969). Journal of Agricultural and Food Chemistry 17, 13531354.Google Scholar
Yanagita, T., Sugano, M., Cho, S. & Wada, M. (1973). Journal of the Agricultural Chemistry Society of Japan 47, 7378.Google Scholar
Yong, S. H., Lau, S., Hsiek, Y. & Karel, M. (1980). In Autoxidation in Food and Biological Systems, pp. 237247 [Simic, M. G. and Karel, M., editors]. New York: Plenum Press.CrossRefGoogle Scholar