Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T12:50:26.088Z Has data issue: false hasContentIssue false

Quantitative studies on nitrogen metabolism in the bovine rumen

The rate of proteolysis of casein and ovalbumin and the release and metabolism of free amino acids

Published online by Cambridge University Press:  09 February 2010

J. L. Mangan
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Monozygous twin cattle with permanent rumen fistulas were used to measure the rate of degradation of casein and ovalbumin. One twin was used as a control and the other had protein administered by fistula about 4.75 h after eating a standard ration.

2. Casein was rapidly degraded with a half-life in the range 5.6–21.5 min, with the formation of peptides, free amino acids and finally ammonia. Up to 43% of the casein nitrogen was found as ammonia in the rumen fluid. Most of the amino acids present in casein were found in the free state in the rumen fluid to an extent of less than 7%, but valine, leucine, isoleucine and lysine were present as 25, 27, 21 and 38% respectively of the amounts present in the casein administered.

3. When acid-hydrolysed casein was given, ammonia was rapidly formed, the maximum amount found in the rumen being equivalent to 39% of the casein N. The individual amino acids were rapidly broken down except for valine, leucine, isoleucine and lysine of which synthesis in addition to degradation may occur.

4. Ovalbumin was degraded slowly with a half-life of 175 min, which was reduced to 132 min by feeding the cattle with ovalbumin for 5 d. Ammonia was produced slowly.

5. When added together the two proteins were degraded in the rumen independently at their own rates.

6. δ-Amino-n-valeric acid was produced in large quantity when casein or casein hydrolysate was degraded in the rumen.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Abou Akkada, A. R. & Howard, B. H. (1962). Biochem. J. 82, 313.CrossRefGoogle Scholar
Annison, E. F. (1956). Biochem. J. 64, 705.Google Scholar
Appleby, J. C. (1955). J. gen. Microbiol. 12, 526.CrossRefGoogle Scholar
Balch, C. C. (1957). Br. J. Nutr. 11, 213.CrossRefGoogle Scholar
Blackburn, T. H. & Hobson, P. N. (1962). J. gen. Microbiol. 29, 69.Google Scholar
Blaxter, K. L. & Martin, A. K. (1962). Br. J. Nutr. 16, 397.CrossRefGoogle Scholar
Bryant, A.M. (1964). Proc. N.Z. Soc. Anim. Prod. 24, 57.Google Scholar
Bryant, M. P. & Burkey, L. A. (1953). J. Dairy Sci. 36, 218.Google Scholar
Chalmers, M.I., Cuthbertson, D. P. & Synge, R. L. M. (1954). J. agric. Sci., Camb. 44, 254.Google Scholar
Chibnall, A. C., Rees, M. W. & Williams, E. F. (1943). Biochem. J. 37, 354.Google Scholar
Clarke, E. M. W., Ellinger, G. M. & Phillipson, A. T. (1966). Proc. R. Soc. B. 166, 63.Google Scholar
Colebrook, W. F. & Reis, P. J. (1969). Aust. J. biol. Sci. 22, 1507.CrossRefGoogle Scholar
El-Shazly, K. (1952). Biochem. J. 51, 647.Google Scholar
Ely, D. G., Little, C. O., Woolfolk, P. G. & Mitchell, G. E. Jr. (1967). J. Nurtr. 91, 314.Google Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. Biol. Chem. 66, 375.Google Scholar
Gerok, W. & Waller, H. D. (1956). Klin. Wschr. 34, 1284.CrossRefGoogle Scholar
Gray, F. V., Pilgrim, A. I. & Weller, R. A. (1958). Br. J. Nutr. 12, 413.Google Scholar
Hamilton, P. B. (1958). Analyt. Chem. 30, 914.Google Scholar
Harrison, F. A. (1961). Vet. Hec. 73, 942.Google Scholar
Hill, K. J. & Mangan, J. L. (1964). Biochem. J. 93, 39.Google Scholar
Hoflund, S., Quin, J. I. & Clark, R. (1948). Onderstepoort. J. vet. Sci. Anim. Ind. 23, 395.Google Scholar
Hogan, J. P. & Weston, IR. H. (1967). Aust. J. agric. Res. 18, 973.CrossRefGoogle Scholar
Hume, I. D. (1970 a). Aust. J. agric. Res. 21, 297.Google Scholar
Hume, I. D. (1970 b). Aust. J. agric. Res. 21, 305.Google Scholar
Hume, I. D. & Bird, P. R. (1970). Aust. J. agric. Res. 21, 315.CrossRefGoogle Scholar
Hume, I. D., Moir, R. J. & Somers, M. (1970). Aust. J. agric. Res. 21, 283.CrossRefGoogle Scholar
Hydén, S. (1956). LantbrHögsk. Annlr 22, 139.Google Scholar
Kekwick, R. A. & Cannan, R. K. (1936). Biochem. J. 30, 227.Google Scholar
Lewis, D. (1955). Br. J. Nutr. 9, 215.CrossRefGoogle Scholar
Lewis, D., Hill, K. J. & Annison, E. F. (1957). Biochem. J. 66, 587.CrossRefGoogle Scholar
McDonald, I. W. (1948). Biochem. J. 4, 584.Google Scholar
McDonald, I. W. (1952). Biochem. J. 51, 86.Google Scholar
McDonald, I. W. (1954). Biochem. J. 56, 120.CrossRefGoogle Scholar
McDonald, I. W. & Hall, R. J. (1957). Biochem. J. 67, 400..CrossRefGoogle Scholar
Mangan, J. L., Johns, A. T. & Bailey, R. W. (1959). N.Z. Jl agric. Res. 2, 342..CrossRefGoogle Scholar
Mangan, J. L. & Wright, P. C.. (1968). Hes. vet. Sci. 9, 366.Google Scholar
Moore, S. & Stein, W. H. (1954). J. biol. Chem. 211, 907.Google Scholar
Oyaert, W. & Bouckaert, J. H. (1960). Zentbl. Vet. Med. 7, 929.Google Scholar
Pearson, R. M. & Smith, J. A. B. (1943). Biochem. J. 37, 153.Google Scholar
Pilgrim, A. F., Gray, F. V., Weller, K. A. & Belling, C. B. (1970). Br. J. Nut. 24, 589..Google Scholar
Porter, R. R. (1950). Biochem. J. 46, 473.Google Scholar
Reid, C. S. W., Lyttleton, J. W. & Mangan, J. L. (1962). N.Z. Jl ugric. Res. 5, 237.Google Scholar
Reis, P. J. & Tunks, D. A. (1969). Azist. J. agric. Res. 20, 775.Google Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1190.CrossRefGoogle Scholar
Syme, E. A. (1938). Actu Biol. exp. Vurs. 12, 19.Google Scholar
Tristram, G. R. (1953). In The Proteins Vol. 1(A), p. 216 [Neurath, H. and Bailey, K. editors.] New York: Academic Press.Google Scholar
Van den Hende, C., Oyaert, V. & Bouckaert, J. H. (1964). Res. vet. Sci. 5, 491..CrossRefGoogle Scholar
Virtanen, A. I. (1966). Science, N. Y. 153, 160.Google Scholar
Warner, A. C. I.. (1956). J. gen. Microbiol. 14, 749.CrossRefGoogle Scholar
Weller, R. A., Gray, F. V. & Pilgrim, A. F. (1958). Br. J. Nzitr. 12, 421.CrossRefGoogle Scholar
Williams, P. P., Davis, R. E., Doetsch, R. S. & Gutierrez, J. (1961). Appl. Microbiol. 9, 405.Google Scholar
Wright, P. C.. (1967). In Fifth Colloqfxium in Amino Acid Analysis p. 164. blonogmph 2, Technicon International Division, Domont, France.Google Scholar