Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T12:57:33.590Z Has data issue: false hasContentIssue false

Quantitative studies of food protein degradation and the energetic efficiency of microbial protein synthesis in the rumen of sheep given chopped lucerne and rolled barley

Published online by Cambridge University Press:  09 March 2007

J. C. Mathers
Affiliation:
Department of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
E. L. Miller
Affiliation:
Department of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In a randomized block design, four sheep were given 800 g daily of diets containing: chopped lucerne (L), chopped lucerne–rolled barley (2:1; LB), rolled barley–chopped lucerne (2:1; BL), rolled barley (B); each diet was supplemented with minerals, vitamins and urea as considered necessary. Chromic oxide was included in the diets as a flow marker.

2. Flows of organic matter (OM) and non-ammonia-nitrogen (NAN) to the small intestine (SI) were measured and microbial protein was identified by a 35S-incorporation procedure.

3. OM disappearance in the rumen increased linearly with increasing inclusion of barley in the diet but there was no significant change in microbial NAN flow to the SI so that the yield of microbial NAN (g)/kg fermented OM (FOM) decreased from 29.6 (diet L) to 22.7 (diet B). Changes in the energetic efficiency of microbial protein synthesis appeared to be unrelated to alterations in rumen fluid volatile fatty acid (VFA) proportions or in rumen fluid dilution rate (D).

4. The degradability of dietary protein (non-urea-N), estimated using the 35S procedure, was 0.72, 0.76, 0.86 and 0.86 for diets L, LB, BL and B respectively. Similar values were obtained from concurrent polyester-bag experiments when the fractional outflow rate of undergraded protein from the rumen (k) was assumed to be 0.046.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Agricultural Research Council (1965). The Nutrient Requirements of Farm Livestock no. 2, Ruminants. London: HM Stationery Office.Google Scholar
Allen, S. A. & Miller, E. L. (1976). Br. J. Nutr. 36, 353.CrossRefGoogle Scholar
Allison, M. J. (1965). In Physiology of Digestion in the Ruminant, p. 369 [Dougherty, R. W., editor]. London: Butterworths.Google Scholar
American Society of Agricultural Engineers (1967). Yb. Am. Soc. agric. Engrs., p. 301.Google Scholar
Ash, R. W. (1962). Anim. Prod. 4, 309.Google Scholar
Barker, S. B. & Summerson, W. H. (1940). J. biol. Chem. 138, 535.CrossRefGoogle Scholar
Blaxter, K. L., Graham, N. Mc. C. & Wainman, F. W. (1956). Br. J. Nutr. 10, 69.Google Scholar
Bray, A. C. & Till, A. R. (1975). In Digestion and Metabolism in the Ruminunt, p. 243 [McDonald, I. W. & Warner, A. C. I., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Broderick, G. A. (1978). J. Nutr. 108, 181.CrossRefGoogle Scholar
Chalmers, M. I., Cuthbertson, D. P. & Synge, R. L. M. (1954). J. agric. Sci., Camb. 44, 263.Google Scholar
Chamberlain, D. G. & Thomas, P. C. (1979). J. Sci. Fd Agric. 30, 677.CrossRefGoogle Scholar
Church, D. C. (1975). Digestive Physiology and Nutrition in Ruminants, vol. 1, 2nd ed. Oregon, U.S.A.: D.C. Church.Google Scholar
Czerkawski, J. W. (1976). J. Sci. Fd Agric. 27, 621.Google Scholar
Donaghey, S. F. O'B. (1976). Metabolic pathways in whole animals: A quantitative study of glucose metabolism in ruminants with special reference to lactating cows. PhD Thesis, University of Cambridge.Google Scholar
Downes, A. M. & McDonald, I. W. (1964). Br. J. Nutr. 18, 153.CrossRefGoogle Scholar
Egan, A. R., Walker, D. J., Nader, C. J. & Storer, G. (1975). Aust. J. agric. Res. 26, 909.CrossRefGoogle Scholar
Faichney, G. J. & Griffiths, D. A. (1978). Br. J. Nutr. 40, 71.CrossRefGoogle Scholar
Ganev, G., Ørskov, E. R. & Smart, R. (1979). J. agric. Sci., Camb. 93, 651.CrossRefGoogle Scholar
Gawthorne, J. M. & Nader, C. J. (1976). Br. J. Nutr. 35, 11.CrossRefGoogle Scholar
Grovum, W. L. & Williams, V. J. (1973 a). Br. J. Nutr. 30, 231.CrossRefGoogle Scholar
Grovum, W. L. & Williams, V. J. (1973 b). Br. J. Nutr. 30, 313.CrossRefGoogle Scholar
Grovum, W. L. & Williams, V. J. (1977). Br. J. Nutr. 38,425.CrossRefGoogle Scholar
Hagemeister, H., Lupping, W. & Kaufmann, W. (1981). In Recent Advances in Animal Nutrition– 1980, p. 67 [Haresign, W., editor]. London: Butterworths.Google Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1975). J. agric. Sci., Camb. 85,93.Google Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1976). J. Sci. Fd Agric. 27,617.Google Scholar
Harrop, C. J. F. (1974). J. agric. Sci., Camb. 83, 249.CrossRefGoogle Scholar
Hespell, R. B. & Bryant, M. P. (1979). J. Anim. Sci. 49, 1640.CrossRefGoogle Scholar
Hobson, P. N. (1965). J. gen. Microbiol. 38, 167.Google Scholar
Hobson, P. N. & Summers, R. (1967). J. gen. Microbiol. 47, 53.CrossRefGoogle Scholar
Hume, I. D. (1970). Aust. J. agric. Res. 21, 297.Google Scholar
Hume, I. D. & Bird, P. R. (1970). Aust. J. agric. Res. 21, 315.CrossRefGoogle Scholar
Ishaque, M., Thomas, P. C. & Rook, J. A. F. (1971). Nature, New Biol. 231, 253.CrossRefGoogle Scholar
Jackson, P., Rook, J. A. F. & Towers, K. G. (1971). J. Dairy Res. 38, 33.CrossRefGoogle Scholar
Johnson, C. M. & Nishita, H. (1952). Analyt. Chem. 24, 736.Google Scholar
Journet, M. & Vèrité, R. (1977). In Protein Metabolism and Nutrition, p. 119 [Tamminga, S., editor]. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Kennedy, P. M., Christopherson, R. J. & Milligan, L. P. (1976). Br. J. Nutr. 36, 231.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Br. J. Nutr. 39, 105.CrossRefGoogle Scholar
Leng, R. A. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 406 [Phillipson, A. T., editor]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
Leng, R. A. (1973). In Chemistry and Biochemistry of Herbage, vol. 3, p. 81 [Butler, G. W. and Bailey, R. W., editors]. New York: Academic Press.Google Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Aust. J. agric. Res. 23, 321.Google Scholar
Ling, J. R. & Buttery, P. J. (1978). Br. J. Nutr. 39, 165.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1974). Br. J. Nutr. 31, 77.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1977). Br. J. Nutr. 37, 55.Google Scholar
McDonald, I. W. (1948). J. Physiol., Lond. 107, 21P.Google Scholar
McMeniman, N. P., Ben-Ghedalia, D. & Armstrong, D. G. (1976). In Protein Metabolism and Nutrition, p. 217 [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D.Neale, R. J. and Swan, H., editors]. London: Butterworths.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 377.CrossRefGoogle Scholar
Mann, S. O. (1970). J. appl. Bact. 33, 403.CrossRefGoogle Scholar
Mason, V. C. (1969). J. agric. Sci., Camb. 73, 99.CrossRefGoogle Scholar
Mathers, J. C. (1978). Inter-relationships between energy and protein metabolism in the rumen. PhD Thesis, University of Cambridge.Google Scholar
Mathers, J. C., Horton, C. M. & Miller, E. L. (1977). Proc. Nutr. Soc. 36, 37A.Google Scholar
Mathers, J. C. & Miller, E. L. (1977). Proc. Nutr. Soc. 36, 7A.Google Scholar
Mathers, J. C. & Miller, E. L. (1980). Br. J. Nutr. 43, 503.CrossRefGoogle Scholar
Mathison, G. W. & Milligan, L. P. (1971). Br. J. Nutr. 25, 351.Google Scholar
Mehrez, A. Z., Ørskov, E. R. & McDonald, I. (1977). Br. J. Nurr. 38, 437.CrossRefGoogle Scholar
Mehrez, A. Z., Ørskov, E. R. & Opstvedt, J. (1980). J. Anim. Sci. 50, 737.CrossRefGoogle Scholar
Mercer, J. R., Allan, S. A. & Miller, E. L. (1980). Br. J. Nutr. 43, 421.CrossRefGoogle Scholar
Miller, E. L. (1978). In Ruminant Digestion and Feed Evaluation, p. 15.1 [Osbourn, D. F., Beever, D. E. and Thomson, D. J., editors]. London: Agricultural Research Council.Google Scholar
Miller, E. L. (1980). In Vicia Faba. Feeding Value, Processing and Viruses, p. 17 [Bond, D. A., editor]. The Hague: Martinus Nijhoff.Google Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 21, 177.Google Scholar
Offer, N. W., Axford, R. F. E. & Evans, R. A. (1978). Br. J. Nutr. 40, 35.CrossRefGoogle Scholar
Ørskov, E. R., Fraser, C. & McDonald, I. (1971). Br. J. Nutr. 26,477.CrossRefGoogle Scholar
Ørskov, E. R. & McDonald, I. (1979). J. agric. Sci., Camb. 92, 499.Google Scholar
Ørskov, E. R. & Mehrez, A. Z. (1977). Proc. Nutr. Soc. 36, 78A.Google Scholar
Pearson, R. M. & Smith, J. A. B. (1943). Biochem. J. 37, 148.CrossRefGoogle Scholar
Pennington, R. J. & Sutherland, T. M. (1956). Biochem. J. 56, 353.CrossRefGoogle Scholar
Phillipson, A. T. (1952). Br. J. Nutr. 6, 190.CrossRefGoogle Scholar
Phillipson, A. T. (1964). In Mammalian Protein Metabolism, vol. 1, p. 71 [Munro, H. N. & Allison, J. B., editors]. London: Academic Press.CrossRefGoogle Scholar
Pilgrim, A. F., Gray, F. V., Weller, R. A. & Belling, C. B. (1970). Br. J. Nurr. 24, 589.Google Scholar
Ridgman, W. R. (1975). Experimentation in Biology, p. 101, Glasgow and London: Blackie.Google Scholar
Rowell, J. G. & Walters, D. E. (1976). J. agric. Sci., Camb. 87, 423.CrossRefGoogle Scholar
Roy, J. H. B., Balch, C. C., Miller, E. L., Ørskov, E. R. & Smith, R. H. (1977). In Protein Metabolism and Nutrition, p. 126 [Tamminga, S., editor]. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Satter, L. D. & Roffler, R. E. (1977). In Protein Metabolism and Nutrition, p. 133 [Tamrninga, S., editor]. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Singh, U. B., Varma, A., Verma, D. N., Lal, M. & Ranjhan, S. K. (1973). J. agric. Sci., Camb. 81, 349.CrossRefGoogle Scholar
Stephen, A. M. & Cummings, J. H. (1979). Proc. Nutr. Soc. 38, 141A.Google Scholar
Stephen, A. M. & Cummings, J. H. (1980). J. med. Microbiol. 13,45.Google Scholar
Stouthamer, A. H. (1977). In Microbial Energetics, p. 285 [Haddock, B. A. and Hamilton, W. A., editors]. London: Cambridge University Press.Google Scholar
Sutton, J. D. & Johnson, V. W. (1969). J. agric. Sci., Camb. 73, 459.Google Scholar
Thivend, P. & Journet, M. (1968). Annls Biol. anim. Biochem. Biophys. 8, 449.CrossRefGoogle Scholar
Thomas, P. C. (1973). Proc. Nutr. Soc. 32, 85.CrossRefGoogle Scholar
Thomson, D. J., Beever, D. E., Coelho da Silva, J. F. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 31.CrossRefGoogle Scholar
Ulbrich, M. & Scholz, H. (1963). Arch. Tierernähr. 13, 296.CrossRefGoogle Scholar
Ulbrich, M. & Scholz, H. (1966). Arch. Tierernähr. 16, 325.CrossRefGoogle Scholar
Wainman, F. W. (1977). Proc. Nutr. Soc. 36, 195.CrossRefGoogle Scholar
Waldo, D. R., Smith, L. W. & Cox, E. L. (1972). J. Dairy Sci. 55, 125.CrossRefGoogle Scholar
Walker, D. J., Egan, A. R., Nader, C. J., Ulyatt, M. J. & Storer, G. B. (1975). Aust. J. agric. Res. 26, 699.Google Scholar
Walker, D. J. & Nader, C. J. (1968). Appl. Microbiol. 16, 1124.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1975). Aust. J. agric. Res. 26, 698.Google Scholar