Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T15:19:28.822Z Has data issue: false hasContentIssue false

Protein synthesis in splanchnic tissues of sheep offered two levels of intake

Published online by Cambridge University Press:  09 March 2007

G. E. Lobley
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Alexmary Connell
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
E. Milne
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
T. A. Ewing
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Protein synthesis rates were measured in liver and gastrointestinal tract (GIT) sections of fattening sheep offered lucerne (Medicago sativa) pellets at either 1.25 or 2 times energy maintenance. The measurement technique involved a large dose of [l-13C]valine over 60 min. Animals on the higher intake had a larger mass of liver protein (143 ν. 100 g, P = 0.02), similar fractional synthesis rates (ks; 22.5 ν. 22.1%/d, not significant) and greater absolute amounts of protein synthesis (32 ν. 23 g/d; P = 0.016) compared with those on the smaller amount of ration. The ks values and RNA: protein in the GIT sections also tended to increase with food intake. Estimated total GIT protein synthesis was approximately three-fold that in liver and probably constituted 25–35% of whole body synthesis. All splanchnic tissues measured had lower translational efficiencies (g protein synthesized/d per g total RNA) than reported for milk-fed and newly-weaned lambs and this may relate to the decline in the rate of protein deposition as lambs progress to the fattening condition.

Type
Protein synthesis
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Abdul-Razzaq, H. A. & Bickerstaffe, R. (1989). The influence of rumen fatty acids on protein metabolism in growing lambs. British Journal of Nutrition 62, 297310.CrossRefGoogle ScholarPubMed
Attaix, D. (1988). Influence de l’age et du sevrage sur la synthese proteique chez I’agneau (Influence of age and weaning on protein synthesis in the lamb). These de Doctorat d’Etat, l’Université Blaise Pascal, Clermont 11, France.Google Scholar
Attaix, D., Aurousseau, E., Manghebati, A. & Arnal, M. (1988). Contribution of liver, skin and skeletal muscle to whole-body protein synthesis in the young lamb. British Journal of Nutrition 60, 7784.CrossRefGoogle ScholarPubMed
Attaix, D., Mangehabti, A., Grizard, J. & Arnal, M. (1986). Assessment of in vivo protein synthesis in lamb tissues with [3H]valine flooding doses. Biochimica et Biophysica Acta 882, 389397.CrossRefGoogle ScholarPubMed
Attaix, D. & Meslin, K. C. (1991). Changes in small intestinal mucosa morphology and cell renewal in suckling, prolonged-suckling, and weaned lambs. American Journal of Physiology 261, R811818.Google ScholarPubMed
Bryant, D. T. W. & Smith, R. W. (1982). The effect of lactation on protein synthesis in ovine skeletal muscle. Journal qf Agricultural Science, Cambridge 99, 319323.CrossRefGoogle Scholar
Burrin, D. G., Davis, T. A., Fiorotto, M. L. & Reeds, P. J. (1991). Stage of development and fasting affect protein synthetic activity in the gastrointestinal tissues of suckling rats. Journal of Nutrition 121, 10991108.CrossRefGoogle ScholarPubMed
Burrin, D. G., Ferrell, C. L., Britton, R. A. & Bauer, M. (1990). Level of nutrition and visceral organ size and metabolic activity in sheep. British Journal of Nutrition 64, 439448.CrossRefGoogle ScholarPubMed
Davis, S. R., Barry, T. N. & Hughson, G. A. (1981). Protein synthesis in tissues of growing lambs. British Journal of Nutrition 46, 409419.CrossRefGoogle ScholarPubMed
Early, R. J., McBride, B. W. & Ball, R. O. (1988). Phenylalanine metabolism in sheep infused with glucose plus insulin. 1. Effects on plasma phenylalanine concentration, entry rate and utilisation by the hindlimb. Canadian Journal of Animal Science 68, 711720.CrossRefGoogle Scholar
Early, R. J., McBride, B. W. & Ball, R. O. (1990). Growth and metabolism in somatotropin treated steers: III Protein synthesis and tissue energy expenditures. Journal of Animal Science 68, 41534166.CrossRefGoogle ScholarPubMed
Eisemann, J. H., Hammond, A. C. & Rumsey, T. S. (1989). Tissue protein synthesis and nucleic acid concentrations in steers treated with somatotropin. British Journal of Nutrition 62, 657671.CrossRefGoogle ScholarPubMed
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochemical Journal 192, 719723.CrossRefGoogle ScholarPubMed
Harris, P. M., Lobley, G. E., Skene, P. A., Buchan, V., Calder, A. G., Anderson, S. E. & Connell, A. (1992). Effect of food intake on hind-limb and whole-body protein metabolism in young growing sheep: chronic studies based on arterio-venous techniques. British Journal of Nutrition 68, 388407.CrossRefGoogle ScholarPubMed
Junghahn, l. & Bommer, U.-A. (1987). Age-dependent changes in the activity of the cytosolic fraction from rat liver to stimulate polysomal protein synthesis and the role of initiation factor eIF-2. Biomedica Biochimicu Acta 46, 791794.Google ScholarPubMed
Kimball, S. R., Vary, T. C. & Jefferson, L. S. (1992). Age-dependent decrease in the amount of eukaryotic initiation factor 2 in various rat tissues. Biochemical Journal 286, 263268.CrossRefGoogle ScholarPubMed
Kuhara, T., Ikeda, S., Ohneda, A. & Sasaki, Y. (1991). Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon and insulin in sheep. American Journal of physiology 260. E21E26.Google ScholarPubMed
Lewis, S. E. M., Kelly, F. J. & Goldspink, D. F. (1984). Pre- and post-natal growth and protein turnover in smooth muscle, heart and slow- and fast-twitch skeletal muscle of the rat. Biochemical Journal 217, 517526.CrossRefGoogle ScholarPubMed
Lobley, G. E. (1986). The physiological bases of nutrient responses: growth and fattening. Proceedings of the Nutrition Society, 45, 203214.CrossRefGoogle ScholarPubMed
Lobley, G. E. (1993). Species comparison of tissue protein metabolism: effects of age and hormonal action. Journal of Nutrition (In the Press.)CrossRefGoogle ScholarPubMed
Lobley, G. E., Connell, A., Milne, E., Buchan, V., Calder, A. G., Anderson, S. E. & Vint, H. (1990). Muscle protein synthesis in response to testosterone administration in wether lambs. British Journal of Nutrition 64,691704.CrossRefGoogle ScholarPubMed
Lobley, G. E., Harris, P. M., Skene, P. A, Buchan, V., Milne, E., Calder, A. G., Anderson, S. E., Garlick, P. J. & Connell, A. (1992). Responses in tissue protein synthesis to sub- and supra-maintenance intake in young growing sheep: comparison of large-dose, and continuous-infusion techniques. British Journal of Nutrition 68,373388.CrossRefGoogle ScholarPubMed
Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. & Pennie, K. (1980). Whole body and tissue protein synthesis in cattle. Brirish Journal of Nutrition 43, 491502.CrossRefGoogle ScholarPubMed
McNurlan, M. A. & Garlick, P. J. (1981). Protein synthesis in the liver and small intestine in protein deprivation and diabetes. American Journal of Physiology 241, E238–245.Google ScholarPubMed
Merry, B. J., Holehan, A. M., Lewis, S. E. M. & Goldspink, D. F. (1987). The effects of ageing and chronic dietary restriction on in vivo hepatic protein synthesis in the rat. Mechanisms of Ageing and Development 39, 189199.CrossRefGoogle ScholarPubMed
Merry, B. J., Lewis, S. E. M. & Goldspink, D. F. (1992). The influence of age and chronic restricted feeding on protein synthesis in the small intestine of the rat. Experimenta1 Gerontology 27, 19200.Google ScholarPubMed
Oddy, V. H., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1987). Effect of insulin on hind-limb and whole body leucine and protein metabolism in fed and fasted lambs. British Journal of Nutrition 58, 437452.CrossRefGoogle ScholarPubMed
Pell, J. M. & Bates, P. C. (1987). Collagen and non-collagen protein turnover in skeletal muscle of growth hormone-treated lambs. Journal of Endocrinology 115, R1R4.CrossRefGoogle ScholarPubMed
Pell, J. M., Calderone, E. M. & Bergman, E. N. (1986). Leucine and α-ketoisocaproate metabolism and interconversions in fed and fasted sheep. Metabolism 35, 10051016.CrossRefGoogle ScholarPubMed
Read, W. W., Read, M., Rennie, M. J., Griggs, R. C. & Halliday, D. (1984). Preparation of CO2 from blood and protein-bound amino acid carboxyl groups for quantitation of 13C-isotope enrichments. Biomedical Mass Spectrometry 15, 467472.Google Scholar
Reynolds, C. K., Tyrell, H. F. & Reynolds, P. J. (1991). Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef steers: whole body energy and nitrogen balance and visceral heat production. Journal of Nutrition 121, 9941003.CrossRefGoogle Scholar
Schaefer, A. L., Davis, S. R. & Hughson, G. A. (1986). Estimation of tissue protein synthesis in sheep during sustained elevation of plasma leucine concentration by intravenous infusion. British Journal of Nutrition 56, 281288.CrossRefGoogle ScholarPubMed
Searle, T. W. & Graham, N. McC. (1987). Patterns in growth. 1. Changes in body fat and protein. Proceedings of the Nutrition Society of Australia 12, 136140.Google Scholar
Southorn, B. G., Kelly, J. M. & McBride, B. W. (1992). Phenylalanine flooding dose procedure is effective in measuring intestinal and liver protein synthesis in sheep. Journal of Nutrition 122, 23982407.CrossRefGoogle ScholarPubMed
Webster, A. J. F., Osuji, P. O., White, F. & Ingram, J. F. (1975). The influence of food intake on portal blood flow and heat production in the digestive tract of sheep. British Journal of Nutrition 34, 125139.CrossRefGoogle ScholarPubMed