Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:45:59.508Z Has data issue: false hasContentIssue false

Protein quality of feeding-stuffs

4.* Progress report on collaborative studies on the microbiological assay of available amino acids

Published online by Cambridge University Press:  09 March 2007

A. W. Boyne
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen
S. A. Price
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
G. D. Rosen
Affiliation:
Field Investigations and Nutrition Services Ltd, 310 Regent Street, London, W 1
J. A. Stott
Affiliation:
J. Bibby and Sons Ltd, King Edward Street, Liverpool 3, Lancs.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Samples of whale, meat, fish, groundnut and soya-bean meals and skim-milk powders were assayed microbiologically with Tetrahymena pyriformis W and Streptococcus zymogenes for available methionine and available lysine.

2. Detailed collaborative studies on the assay of available methionine with Strep. zymogenes were conducted on the effects of dry- or wet-grinding the test meals, the use of crude or purified papain for predigesting the ground meals and the use of optical density or titratable acidity as criteria of bacterial growth response.

3. Wide differences were observed in the available methionine and available lysine contents of a variety of meals in the preliminary studies, with a promising measure of interlaboratory agreement in the assay of available methionine with Strep. zymogenes.

4. As a result of detailed collaborative studies a provisional method is proposed for the assay of available methione with Strep. zymogenes, adopting dry-grinding and predigestion with an agreed level of papain in the preparation of the meals. No general recommendation could be offered on the comparative merits of optical density and titratable acidity as criteria of bacterial growth response.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Anantharaman, K. & Carpenter, K. J. (1965). Proc. Nutr. Soc. 24, xxxii.Google Scholar
Anson, M. L. (19381939). J. gen Physiol. 22, 79.Google Scholar
Barber, R. S., Braude, R., Chamberlain, A. G., Hosking, Z. D. & Mitchell, K. G. (1964). Br. J. Nutr. 18, 545.CrossRefGoogle Scholar
Barton-Wright, E. C. (1963) Practical Methods for the Microbiological Assay of the Vitamin B Complex and Amino Acids. London: United Trade Press Ltd.Google Scholar
Baum, F. & Haenel, H. (1965) Nahrung 9, 517.Google Scholar
Boyne, A. W., Carpenter, K. J. & Woodham, A. A. (1961). J. Sci. Fd Agric. 12, 832.CrossRefGoogle Scholar
Bunyan, J. & Price, S. A. (1960). J. Sci. Fd Agric. 11, 25.Google Scholar
Bunyan, J. & Woodham, A. A. (1964). Br. J. Nutr. 18, 537.CrossRefGoogle Scholar
Carpenter, K. J. (1960). Biochem. J. 77, 604.CrossRefGoogle Scholar
Carter, D. V. & Sykes, G. (1961). J. Pharm. Pharmac. 13, 195T.Google Scholar
Celliers, P. G. (1961). S. Afr. J. agric. Sci. 4, 191.Google Scholar
Dunn, M. S. & Rockland, L. B. (1947). Proc. Soc. exp. Biol. Med. 64, 377.Google Scholar
Fernell, W. R. & Rosen, G. D. (1954). Proc. Nutr. Soc. 13, xviii.Google Scholar
Fernell, W. R. & Rosen, G. D. (1956). Br. J. Nutr. 10, 143.CrossRefGoogle Scholar
Ford, J. E. (1960). Br. J. Nutr. 14, 485.CrossRefGoogle Scholar
Ford, J. E. (1962). Br. J. Nutr. 16, 409.Google Scholar
Ford, J. E. (1964). Br. J. Nutr. 18, 449.Google Scholar
Halevy, S. & Grossowicz, N. (1953). Proc. Soc. exp. Biol. Med. 82, 567.Google Scholar
Horn, M. J., Blum, A. E. & Womack, M. (1954). J. Nutr. 52, 375.Google Scholar
Kidder, G. W. & Dewey, V. C. (1951). In Biochemistry and Physiology of Protozoa. Vol. I, p. 323. [Lwoff, A., editor.] New York: Academic Press Inc.CrossRefGoogle Scholar
Mertz, E. T., Rennert, S. S. & Cole, E. W. (1955). J. Nutr. 56, 437.Google Scholar
Miller, E. L., Carpenter, K. J. & Milner, C. K. (1965). Br. J. Nutr. 19, 547.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J. & Morgan, C. B. (1963). Proc. int. Congr. Nutr. VI. Edznburgh p. 488.Google Scholar
Miller, E. L., Carpenter, K. J., Morgan, C. B. & Boyne, A. W. (1965). Br. J. Nutr. 19, 249.CrossRefGoogle Scholar
Pilcher, H.L. & Williams, H. H. (1954). J. Nutr. 53, 589.Google Scholar
Rao, M. N., Sreenivas, H., Swaminathan, M., Carpenter, K. J. & Morgan, C. B. (1963). J. Sci. Fd Agric. 14, 544.CrossRefGoogle Scholar
Rockland, L. B. & Dunn, M. S. (1946). Arch Biochem. 11, 541.Google Scholar
Rogers, C. G. & McLaughlan, J. M. (1958). Bact. Proc. p. 20.Google Scholar
Rogers, C. G., McLaughlan, J. M. & Chapman, D. G. (1959). Can. J. Biochem. Physiol. 37, 1351.CrossRefGoogle Scholar
Rosen, G. D. (1959). Proc. int. Symp. Microchem., 1958, p. 212. London: Pergamon Press.Google Scholar
Rosen, G. D. & Fernell, W. R. (1954). Proc. Nutr. Soc. 13, 19.Google Scholar
Rosen, G.D. & Fernell, W. R. (1956). Br.J. Nutr. 10, 156.Google Scholar
Rosen, G. D., Stott, J. A. & Smith, H. (1960 a). Proc. int. Congr. Nutr. v. Washington p. 72.Google Scholar
Rosen, G. D., Stott, J. A. & Smith, H. (1960 b). Proceedings of the Pfizer European Agricultural Research Conference, p. 368. [Vernon, J. and Rosen, G.D., editors]. Tonbridge, Kent: Tonbridge Printers Ltd.Google Scholar
Rosen, G. D., Stott, J. A. & Smith, H. (1962). Cereal Sci. Today. 7, 36.Google Scholar
Saunders, J. & McFadyen, M. H. (1964). Nature, Lond. 202, 594.Google Scholar
Shockman, G. D. (1963). Analytical Microbiology, p. 567. [Kavanagh, F., editor.] New York: Academic Press Inc.Google Scholar
Stott, J. A. & Smith, H. (1966). Br. J. Nutr. 20, 663.Google Scholar
Stott, J. A., Smith, H. & Rosen, G. D. (1963). Br. J. Nutr. 17, 227.Google Scholar
Teeri, A. E., Virchow, W. & Loughlin, M. E. (1956). J. Nutr. 59, 587.Google Scholar
Teunisson, D. J. (1961). Analyt. Biochem. 2, 405.Google Scholar
Waterworth, D. G. (1964). Br. J. Nutr. 18, 503.Google Scholar
Zuckerman, S. (1959). Nature, Lond. 183, 1303.Google Scholar