Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T01:08:55.051Z Has data issue: false hasContentIssue false

Protein digestibility of a feed mixture in a relation to the protein digestibility of the individual protein components

Published online by Cambridge University Press:  07 January 2011

Bjørn O. Eggum
Affiliation:
Department of Physiology and Chemistry, Agricultural Research Laboratory, Rolighedsvej 25, DK-1958 Copenhagen V, Denmark
Konrad D. Christensen
Affiliation:
Department of Physiology and Chemistry, Agricultural Research Laboratory, Rolighedsvej 25, DK-1958 Copenhagen V, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Protein digestibility of two proteins was measured when these proteins were given together and separately to rats.

2. The influence of carbohydrates on protein utilization (true protein digestibility, biological value and net protein utilization) was also studied. Autoclaved potato starch was replaced by increasing amounts of glucose, sucrose, fructose and lactose respectively. Glucose, fructose and sucrose appeared to have no specific influence on protein utilization when given in increasing amounts and when compared with autoclaved potato starch. Higher concentrations of lactose, however, caused diarrhoea.

3. The true digestibility of the protein components in a mixture was directly related to the true digestibility of each protein component, including proteins of low digestibility.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Association of Official Agricultural Chemists (1965). Official Methods of Analysis of the Association of Official Agricultural Chemists. Washington, DC: Association of Official Agricultural Chemists.Google Scholar
Buraczewski, S., Porter, J. W. G., Rolls, B. A. & Zebrowska, T. (1971). Br. J. Nutr. 25, 299.CrossRefGoogle Scholar
Bønsdorff, Petersen, Chr. (1972). Ugeskr. agron. hort. 43, 872.Google Scholar
Chang, , Vet-Oy, (1962). J. Nutr. 78, 21.CrossRefGoogle Scholar
Dahlqvist, A. & Thomson, D. L. (1964). Acta physiol. scand. 61, 20.CrossRefGoogle Scholar
Eggum, B. O. (1973). A Study of certain factors influencing protein utilization in rats and pigs. Thesis (Dr agric.), The Royal Veterinary and Agricultural University, Copenhagen.Google Scholar
Glem Hansen, N. (1972). Yearbook, Agricultural Research Laboratory, Copenhagen p. 231.Google Scholar
Guggenheim, K., Halevey, S. & Friedmann, N. (1960). Archs Biochem. Biophys. 91, 6.CrossRefGoogle Scholar
Hunkes, L. V., Henderson, L. M., Brickson, W. L. & Elvehjem, C. A. (1948). J. biol. Chem. 174, 873.CrossRefGoogle Scholar
Harper, A. E. & Katayama, M. C. (1953). J. Nutr. 49, 261.CrossRefGoogle Scholar
Mitchell, H. H. (1924). J. biol. Chem. 58, 873.CrossRefGoogle Scholar
Nehring, K. & Bock, H.-D (1962). Arch. Tierernähr. 12, 53.CrossRefGoogle Scholar
Porter, J. W. G. & Rolls, B. A. (1971). Proc. Nutr. Soc. 30, 17.CrossRefGoogle Scholar
Register, U. D. & Peterson, E. W. (1958). J. Nutr. 64, 483.CrossRefGoogle Scholar
Rogers, Q. R. & Harper, A. E. (1966). Wld Rev. Nutr. Diet. 6, 250.CrossRefGoogle Scholar
Rolls, B. A., Porter, J. W. G. & Westgarth, D. R. (1972). Br. J. Nutr. 28, 283.CrossRefGoogle Scholar
Schiller, K. (1956). Arch. Tierernähr. 6, 92.CrossRefGoogle Scholar
Snedecor, G. W. (1956). Statistical Methods 5th ed.Ames, Iowa: Iowa State University Press.Google Scholar
Spivey, H. E., Katayama, M. C., Yoshida, M. & Harper, A. E. (1958). Am. J. Physiol. 193, 479.CrossRefGoogle Scholar
Thorbek, G. & Ludvigsen, J. (1961). Proc. int. Congr. Anim. Husb. VIII. Hamburg p. 114.Google Scholar
Wiener, R. P., Yoshida, M. & Harper, A. E. (1963). J. Nutr. 80, 279.CrossRefGoogle Scholar