Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:42:13.399Z Has data issue: false hasContentIssue false

Production, absorption, distribution and excretion of vitamin B12 in sheep

Published online by Cambridge University Press:  09 March 2007

R. M. Smith
Affiliation:
CSIRO Division of Nutritional Biochemistry, Kintore Avenue, Adelaide, South Australia
Late H. R. Marston
Affiliation:
CSIRO Division of Nutritional Biochemistry, Kintore Avenue, Adelaide, South Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The efficiency of production and utilization of vitamin B12 was studied with sheep given a cobalt-deficient diet with and without supplementary Co (1 mg/d). Vitamin B12 to lignin ratios in rumen contents were used to estimate minimum rates of production and these were related to faecal and urinary excretion. Tissue distribution and excretion of vitamin B12 were studied with [58Co]cyanocobalamin and 5′-deoxyadenosyl[60Co]cobalamin.

2. Labelled Co was rapidly sequestered by particulate material in the rumen and was largely excreted in the faeces. Most of the vitamin B12 in whole rumen contents was contained in micro-organisms, but was released on incubation at pH 2. Added cyanocobalamin was partly degraded in the rumen.

3. The vitamin B12 to lignin ratio in rumen contents began to decline 1–3 d after cessation of a daily Co drench. Estimated ruminal production of vitamin B12 on full feed was not less than 400–700 μg/d with supplementary Co and 50–110 μg/d from the Co (0.01–0.05 μg/g dry weight) in the basal diet. Production of vitamin B12 appeared to be limited by food intake with or without additional Co.

4. At full feed the efficiency of production of vitamin B12 from Co in the basal diet was about 13% while that from added Co was about 3%. Part of the vitamin B12 produced in the rumen was degraded before reaching the faeces and about 5% was absorbed. The minimum total requirements of sheep for vitamin B12 are assessed at about 11 μg/d.

5. Injected 5′-deoxyadenosylcobalamin was better retained than injected cyanocobalamin, faecal excretion exceeded urinary excretion with both. Labelled cobalamin was selectively retained by liver (particularly by the mitochondria), kidneys and the walls of parts of the alimentary tract. Vitamin B12 was secreted into the duodenum and reabsorbed in the ileum, but little secretion occurred above the duodenum and little absorption below the small intestine.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

REFERENCES

Barker, H. A., Smyth, R. D., Weissbach, H., Munch-Petersen, A., Toohey, J. I., Ladd, J. N., Volcani, B. E. & Wilson, R. M. (1960). J. biol. Chem. 235, 181.CrossRefGoogle Scholar
Barker, H. A., Smyth, R. D., Weissbach, H., Toohey, J. I., Ladd, J. N. & Volcani, B. E. (1960). J. biol. Chem. 235, 480.CrossRefGoogle Scholar
Comar, C. L. (1948). Nucleonics, 10. 1948, p. 30.Google Scholar
Dawbarn, M. C. & Hine, D. C. (1955). Aust. J. exp. Biol. med. Sci. 33, 335.CrossRefGoogle Scholar
Dawbarn, M. C., Hine, D. C. & Hughes, P. (1952). Nature, Lond. 170, 793.CrossRefGoogle Scholar
Dawbarn, M. C., Hine, D. C. & Smith, J. (1957). Aust. J. exp. Biol. med. Sci. 35, 97.CrossRefGoogle Scholar
Gräsbeck, R., Ignatius, R., Järnefelt, J., Lindén, H., Mali, A. & Nyberg, W. (1961). Clinica chim. Acta 6, 56.CrossRefGoogle Scholar
Hale, W. H., Pope, A. L., Phillips, P. H. & Bohstedt, G. (1950). J. Anim. Sci. 9, 414.CrossRefGoogle Scholar
Hine, D. C. & Dawbarn, M. C. (1954). Aust. J. exp. Biol. med. Sci. 32, 641.CrossRefGoogle Scholar
Hoekstra, W. G., Pope, A. L. & Phillips, P. H. (1952). J. Nutr. 48, 421.CrossRefGoogle Scholar
Hogan, J. P. & Weston, R. H. (1967). Aust. J. agric. Res. 18, 803.CrossRefGoogle Scholar
Jarrett, I. G. (1948). J. Coun. scient. ind. Res. Aust. 21, 311.Google Scholar
Kercher, C. J. & Smith, S. E. (1955). J. Anim. Sci. 14, 458.CrossRefGoogle Scholar
Kercher, C. J. & Smith, S. E. (1956). J. Anim. Sci. 15, 550.CrossRefGoogle Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
McKenzie, H. A. & Wallace, H. S. (1954). Aust. J. Chem. 7, 55.CrossRefGoogle Scholar
Marston, H. R. (1970). Br. J. Nutr. 24, 615.CrossRefGoogle Scholar
Marston, H. R., Allen, S. H. & Smith, R. M. (1961). Nature, Lond. 190, 1085.CrossRefGoogle Scholar
Marston, H. R. & Dewey, D. W. (1940). Aust. J. exp. Biol. med. Sci. 18, 343.CrossRefGoogle Scholar
Marston, H. R. & Smith, R. M. (1961). Nature, Lond. 190, 1088.CrossRefGoogle Scholar
Monroe, R. A., Sauberlich, H. E., Comar, C. L. & Hood, S. L. (1952). Proc. Soc. exp. Bid. Med. 80, 250.CrossRefGoogle Scholar
Newman, G. E., O'Brien, J. R. P., Spray, G. H. & Witts, L. J. (1962). In Vitamin B12 und Instrinsic Factor: 2. Europaisches Symposion, 1961 p. 424 [Heinrich, H. C., editor]. Stuttgart: Ferdinand Enke.Google Scholar
Norman, A. G. & Jenkins, S. H. (1934 a). Biochem. J. 28, 2147.CrossRefGoogle Scholar
Norman, A. G. & Jenkins, S. H. (1934 b). Biochem. J. 28, 2160.CrossRefGoogle Scholar
Pennington, R. J. & Sutherland, T. M. (1956). Biochem. J. 63, 618.CrossRefGoogle Scholar
Porter, J. W. G. (1953). Proc. Nutr. Soc. 12, 106.CrossRefGoogle Scholar
Porter, J. W. G. (1957). In Vitamin B12 und Intrinsic Factor: 1. Europaisches Symposion, 1956 p. 43 [Heinrich, H. C., editor]. Stuttgart: Ferdinand Enke.Google Scholar
Reizenstein, P. G. (1959). Acta med. scand. 165, 467.CrossRefGoogle Scholar
Rosenblum, C., Reizenstein, P. G., Cronkite, E. P. & Meriwether, H. T. (1963). Proc. Soc. exp. Biol. Med. 112, 262.CrossRefGoogle Scholar
Smith, E. L. (1965). Vitamin B12, 3rd ed., p. 84. London: Methuen.Google Scholar
Smith, R. M. & Marston, H. R. (1970). Br. J. Nutr. 24, 879.CrossRefGoogle Scholar
Smith, R. M., Osborne-White, W. S. & Russell, G. R. (1965). Biochem. J. 95, 423.CrossRefGoogle Scholar
Smith, S. E. & Loosli, J. K. (1957). J. Dairy Sci. 40, 1215.CrossRefGoogle Scholar
Tosic, J. & Mitchell, R. L. (1948). Nature, Lond. 162, 502.CrossRefGoogle Scholar
Weston, R. H. & Hogan, J. P. (1967). Aust. J. Agric. Res. 18, 789.CrossRefGoogle Scholar