Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T03:44:21.606Z Has data issue: false hasContentIssue false

The prediction of body composition in poultry by estimation in vivo of total body water with tritiated water and deuterium oxide

Published online by Cambridge University Press:  09 March 2007

R. J. Johnson
Affiliation:
Department of Biochemistry, Microbiology and Nutrition, University of New England, Armidale, New South Wales, 2351, Australia
D. J. Farrell
Affiliation:
Department of Biochemistry, Microbiology and Nutrition, University of New England, Armidale, New South Wales, 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Birds (n 169) which varied in age, live weight, nutritional history, physiological state and genotype were slaughtered and analysed for total body water. Before slaughter, birds were injected with the water isotopes tritiated water (TOH) or deuterium oxide (D2O), or both, to determine TOH space or D2O space, or both, as estimates of total body water in vivo.

2. At the mean total body water of all birds determined by desiccation, of 1096·4 (SD 424·1) g, TOH space and D2O space overestimated total body water by 10·4 and 8·5 % respectively. The difference between the isotopes was significant (P < 0·05).

3. Based on recovery of isotope it was postulated that the main reason for the observed overestimation of total body water in vivo was incomplete recovery of isotope due to the vacuum sublimation technique. The mean recovery (%) of added isotope to whole blood after vacuum sublimation was 93·0 (SD 2·6) and 92·4 (SD 5·5) of the theoretical concentrations of TOH and D2O respectively.

4. Nevertheless, accurate prediction of total body water was obtained from regression equations which included live weight and isotope-dilution space. Values required logarithmic (base 10) transformation before derivation of linear and multiple linear regression equations, and the precision of prediction was determined by the residual standard deviation (RSD).

5. Total body water could be predicted with nearly equal accuracy from live weight or isotope-dilution space (RSD 0·025 and 0·020 respectively). Prediction of carcass protein was more accurate from live weight (RSD 0·033) than from TOH space (RSD 0·036), and inclusion of both variables resulted in only a marginal decrease in RSD to 0·031.

6. The prediction of carcass fat and energy was markedly improved by the inclusion of isotope-dilution space in conjunction with live weight compared with live weight alone.

7. The relations show the developmental nature of body composition of domestic fowl given diets adequate in nutrients. The prediction equations demonstrate the precision possible for studies in which estimates of body composition in poultry are required without slaughter.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1988

References

Agricultural Research Council (1975). The Nutrient Requirements of Farm Livestock, no. 1 Poultry, 2nd ed. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Avinur, P. & Nir, A. (1960). Cited by Riley & Brooks (1964).Google Scholar
Bailey, C. B., Kitts, W. D. & Wood, A. J. (1960). Canadian Journal of Animal Science 40, 143155.CrossRefGoogle Scholar
Burton, J. H. & Reid, J. T. (1969). Journal of Nutrition 97, 517524.CrossRefGoogle Scholar
Crabtree, R. M., Houseman, R. A. & Kay, M. (1974). Proceedings of the Nutrition Society 33, 74A.Google Scholar
Culebras, J. M., Fitzpatrick, G. F., Brennan, M. F., Boyden, C. M. & Moore, F. D. (1977). American Journal of Physiology 232 R60R65.Google Scholar
Culebras, J. M. & Moore, F. D. (1977). American Journal of Physiology 232, R54R59.Google Scholar
Draper, N. R. & Smith, H. (1981). Applied Regression Analysis. New York: John Wiley & Sons.Google Scholar
Farrell, D. J. (1972). Poultry Science 51, 683688.CrossRefGoogle Scholar
Farrell, D. J. (1974). British Poultry Science 15, 2541.CrossRefGoogle Scholar
Farrell, D. J. & Balnave, D. (1977). British Poultry Science 18, 381384.CrossRefGoogle Scholar
Farrell, D. J. & Reardon, T. F. (1972). Australian Journal of Agriculrural Research 23, 511517.CrossRefGoogle Scholar
Foot, J. F. & Greenhalgh, J. F. D. (1970). British Journal of Nutrition 24, 815825.CrossRefGoogle Scholar
Foy, J. M. & Schnieden, H. (1960). Journal of Physiology 154, 169176.CrossRefGoogle Scholar
Graystone, J., Seitchik, J., Milch, R., Shulman, G. P. & Cheek, D. B. (1967). Journal of Laboratory and Clinical Medicine 69, 885892.Google Scholar
Hatch, F. T. & Mazrimas, J. A. (1972). Radiation Research 50, 339357.CrossRefGoogle Scholar
Hazelwood, C. F. & Nichols, B. L. (1969). American Journal of Physiology 222, 747750.Google Scholar
Houseman, R. A., McDonald, I. & Pennie, K. (1973). British Journal of Nutrition 30, 149156.CrossRefGoogle Scholar
Hunt, J. R. (1965). Poultry Science 44, 236240.CrossRefGoogle Scholar
Johnson, R. J., Choice, A., Farrell, D. J. & Cumming, R. B. (1984). British Poultry Science 25, 369387.CrossRefGoogle Scholar
Johnson, R. J., Cumming, R. B. & Farrell, D. J. (1985). British Poultry Science 26, 335348.CrossRefGoogle Scholar
Johnson, R. J. & Farrell, D. J. (1982). In 9th Symposium on Energy Metabolism, pp. 258261 [Ekern, A. and Sundstol, F. editors]. European Association of Animal Production Publication no. 29.Google Scholar
Kirchgessner, M., Roth-Maier, D. A., Kirch, P. & Schmidt, H. L. (1977). Zeitschrift fur Tierphysiologie, Tierernahrung und Futtermittelkunde 39, 104108.CrossRefGoogle Scholar
Ling, G. N. & Negendank, W. (1970). Physiological Chemistry and Physics 2, 1519.Google Scholar
Little, D. A. & McLean, R. W. (1981). Journal of Agricultural Science, Cambridge 96, 213220.CrossRefGoogle Scholar
McManus, W. R., Prichard, R. K., Baker, C. & Petruchenia, M. V. (1969). Journal of Agricultural Science, Cambridge 72, 3140.CrossRefGoogle Scholar
Moulton, C. R. (1923). Journal of Biological Chemistry 57, 7997.CrossRefGoogle Scholar
Nagy, K. A. & Costa, D. P. (1980). American Journal of Physiology 238 R454R465.Google Scholar
Nielsen, W. C., Krzywicki, H. J., Johnson, H. L. & Consolazio, C. F. (1971). Journal of Applied Physiology 31, 957961.CrossRefGoogle Scholar
Panaretto, B. A. (1963). Australian Journal of Agricultural Research 14, 944952.CrossRefGoogle Scholar
Panaretto, B. A. (1968). In Body Composition in Animals and Man. Publication no. 1598, pp, 200217. Washington DC: National Academy of Sciences.Google Scholar
Panaretto, B. A. & Till, A. R. (1963). Australian Journal of Agricultural Research 14, 926943.CrossRefGoogle Scholar
Pinson, E. A. (1952). Physiological Reviews 32, 123134.CrossRefGoogle Scholar
Reid, J. T., Bensadoun, A. M.Bull, L. S., Bureton, J. H., Gleeson, P. A., Han, I. K., Joo, Y. D., Johnson, D. E., McManus, W. R., Paladines, O.Stroud, J. W., Tyrrell, H. F., van Niekark, B. D. H., Wellington, G. & Wood, J. D. (1968). In Proceedings of the Cornell Nutrition Conference for Feed Manufacturers pp. 1837 [Swan, H. and Lewis, D. editors]. London: Buttenvorths.Google Scholar
Reid, J. T., Bensadoun, A., Paladines, O. L. & van Niekerk, B. D. H. (1963). Annals of the New York Academy of Sciences 110, 327342.CrossRefGoogle Scholar
Reid, J. T., Wellington, G. H. & Dunn, H. O. (1955). Journal of Dairy Science 38, 13441359.Google Scholar
Riley, C. J. & Brooks, H. (1964). Talanta 11, 897898.CrossRefGoogle Scholar
Rubsamen, K., Nolda, U. & von Engelhardt, W. (1979). Comparative Biochemistry and Physiology A62, 279.CrossRefGoogle Scholar
Searle, T. W. (1970). Journal of Agricultural Science, Cambridge 74, 357362.CrossRefGoogle Scholar
Siri, W. E. (1949). Isotopic Tracers and Nuclear Radiations. New York: McGraw-Hill.Google Scholar
Siri, W. & Evers, J. (1962). In Tritium in the Physical and Biological Sciences, vol. 2, pp. 7184. Vienna: International Atomic Energy Agency.Google Scholar
Smith, B. S. W. & Sykes, A. R. (1974). Journal of Agricultural Science, Cambridge 82, 105112.CrossRefGoogle Scholar
Stansell, M. J. & Mojica, L. (1968). Clinical Chemistry 14, 11121124.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Statistics, With Special Reference to the Biological Sciences. New York: McGraw-Hill.Google Scholar
Turner, M. D., Neely, W. A. & Hardy, J. D. (1960). Journal of Applied Physiology 15, 309310.CrossRefGoogle Scholar
van Gils, L. G. M., Scheele, C. W., Janssen, W. M. M. A. & Verstegen, M. W. A. (1977). In Growth and Poultry Meat Production, pp. 175184. [Boorman, K. N. and Wilson, B. J. editors]. Edinburgh: British Poultry Science Ltd.Google Scholar
Vaughan, B. E. & Boling, E. A. (1961). Journal of Laboratory and Clinical Medicine 57, 159164.Google Scholar
Zaniecka, G. (1969). In Energy Metabolism of Farm Animals, pp. 407409 [Blaxter, K. L.Kielanowski, J. and Thorbek, G. editors]. Oriel Press: Newcastle upon Tyne.Google Scholar