Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T14:05:40.107Z Has data issue: false hasContentIssue false

Postprandial lipaemia is exacerbated in fat-cholesterol-fed rabbits: relationship to atheroma deposition

Published online by Cambridge University Press:  09 March 2007

Christine Juhel
Affiliation:
Unité 130-INSERM (Institut National de la Santé et de la Recherche Médicale), 13009 Marseille, France
Christophe Dubois
Affiliation:
Unité 130-INSERM (Institut National de la Santé et de la Recherche Médicale), 13009 Marseille, France
Michele Senft
Affiliation:
Unité 130-INSERM (Institut National de la Santé et de la Recherche Médicale), 13009 Marseille, France
Emile Levy
Affiliation:
Höpital Sainte-Justine, Centre de Recherche Pédiatrique, Gastroentérologie-Nutrition, Montréal, Québec, H3T IC5, Canada
Huguette Lafont
Affiliation:
Unité 130-INSERM (Institut National de la Santé et de la Recherche Médicale), 13009 Marseille, France
Denis Lairon
Affiliation:
Unité 130-INSERM (Institut National de la Santé et de la Recherche Médicale), 13009 Marseille, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of the present study was to evaluate the links between chronic fat-cholesterol intake, postprandial lipaemia and atherogenesis in New Zealand White rabbits. Adult rabbits were fed on either a low-fat control diet (LF) or a high-fat, high-cholesterol diet (HF). Rabbits received a test meal containing [3H]cholesterol and [14C]triolein on days 0 and 63 for the LF group and days 14,28, 42,63 and 84 for the HF group. Blood was collected 24h post-absorptively and 10,24,34 and 48h after test-meal intake. Post-absorptive as well as postprandial lipoproteins and lipaemia were not modified in the LF rabbits, who did not show any atheroma deposition on day 119. In HF rabbits, postprandial plasma triacylglycerols peaked 24–34h after meal intake. The 0-48 h areas under the curves of triacylglycerol andtriacylglycerol-rich lipoproteins (TRL) steadily increased with time of chronic lipid feeding with values significantly higher than those in the LF rabbits. The postprandial plasma and TRL concentrations of dietary radiolabelled lipids were significantly higher in HF than LF rabbits. Post-heparin lipoprotein lipase (EC 3.1.1.34) and hepatic lipase (EC 3.1.1.3) activities were twofold higher in HF rabbits than in LF rabbits at day 105. In HF rabbits, a marked atheroma plaque deposition in the aorta was observed (30·9 (SE 3·9) % of total surface). The extent of atheroma deposition was positively correlated to the postprandial responses of plasma total triacylglycerols and dietary-derived lipids as well as total cholesterol and dietary-derived cholesterolin HF rabbits. In conclusion, chronic ingestion of a HF diet led to marked increases in postprandial lipaemia and TRL particles, and atheroma deposition.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Armand, M., Borel, P., Dubois, C., Senft, M., Peyrot, J., Salducci, J., Lafont, H. & Lairon, D. (1994). Characterization of emulsions and lipolysis of dietary lipids in the human stomach. American Journal of Physiology 266, G372G381.Google ScholarPubMed
Belfrage, P. & Vaughan, M. (1969). Simple liquid-liquid partition system for isolation of labeled oleic acid from mixture with triglycerides. Journal of Lipid Research 10, 311313.CrossRefGoogle Scholar
Borel, P., Lairon, D., Senft, M., Chautan, M. & Lafont, H. (1989). Effect of wheat germ on the digestion and the intestinal absorption of dietary lipids in the rat. American Journal of Clinical Nutrition 49, 11921202.CrossRefGoogle ScholarPubMed
Buccolo, G. & David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clinical Chemistry 19, 476482.CrossRefGoogle Scholar
Cardin, A. D., Witt, K. R., Chao, J., Margolius, H. S., Donaldson, V. H. & Jackson, R. L. (1984). Degradation of apolipoprotein B-100 of human plasma low density lipoproteins by tissue and plasma kallikreins. Journal of Biological Chemistry 259, 85228528.CrossRefGoogle ScholarPubMed
Chang, S. & Borensztajn, J. (1993). Hepatic lipase function and the accumulation of β-very-low-density lipoproteins in the plasma of cholesterol-fed rabbits. Journal of Biochemistry 293, 745750.CrossRefGoogle ScholarPubMed
Cohn, J. S., McNamara, J. R., Cohn, S. D., Ordovas, J. M. & Schaefer, E. J. (1988). Postprandial plasma lipoprotein changes in human subjects of different ages. Journal of Lipid Research 29, 469479.CrossRefGoogle ScholarPubMed
Connelly, P., Maguire, G., Vezina, C., Hegele, R. & Kuksis, A. (1994). Kinetics of lipolysis of very low density lipoproteins by lipoprotein lipase. Journal of Biochemistry 269, 2055420560.Google ScholarPubMed
Daley, S., Herderick, E., Cornhill, J. & Rogers, K. (1994). Cholesterol-fed and casein-fed rabbit models of atherosclerosis. Arteriosclerosis and Thrombosis 14, 95104.CrossRefGoogle ScholarPubMed
Daugherty, A., Lange, L. G., Sobel, B. E & Schonfeld, G. (1985). Aortic accumulation and plasma clearance of β-VLDL and HDL: effects of diet-induced hypercholesterolemia in rabbits. Journal of Lipid Research 26, 955963.CrossRefGoogle ScholarPubMed
Demacker, P., Van Heijst, P. & Stalenhoef, F. (1992). A study of the chylomicron metabolism in WHHL rabbits after fat loading. Journal of Biochemistry 285, 641646.CrossRefGoogle ScholarPubMed
Dubois, C., Armand, M., Azais-Braesco, V., Portugal, H., Pauli, A.M., Bernard, P.M., Latgé, C., Lafont, H., Borel, P. & Lairon, D. (1994). Effects of moderate amounts of emulsified dietary fat on postprandial lipemia and lipoproteins in normolipemic adults. American Journal of Clinical Nutrition 60, 374382.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957). A simple method for isolation and purification of total lipids from animal tissue. Journal of Biological Chemistry 226, 498509.CrossRefGoogle Scholar
Gianturco, S. H. & Bradley, W. A. (1991). A cellular basis for atherogenicity of triglyceride-rich lipoproteins. Atherosclerosis Review 22, 914.Google Scholar
Holman, R. L., McGill, H. C. & Strong, J. P. (1958). Technics for studying atherosclerotic lesions. Laboratory Investigation 7, 4247.Google ScholarPubMed
Hussain, M., Innerarity, T. L., Brecht, W. J. & Mahley, R. W. (1995). Chylomicron metabolism in normal, cholesterol-fed rabbits, and Watanabe heritable hyperlipidemic rabbits. Saturation of the sequestration step of the remnant clearance pathway. Journal of Biological Chemistry 270, 85788587.CrossRefGoogle ScholarPubMed
Karpe, F. & Hamsten, A. (1995). Postprandial lipoprotein metabolism and atherosclerosis. Current Opinion in Lipidology 6, 123129.CrossRefGoogle ScholarPubMed
Kovanen, P., Brown, M., Basu, S., Bilheimer, D. & Goldstein, J. (1981). Saturation and suppression of hepatic lipoprotein receptors: a mechanism for the hypercholesterolemia of cholesterol-fed rabbits. Proceedings of the National Academy of Sciences USA 78, 13961400.CrossRefGoogle ScholarPubMed
Kritchevsky, D. (1991). Dietary fat and experimental atherosclerosis. International Journal of Tissue Reactions 13, 5965.Google ScholarPubMed
Lairon, D. (1996). Nutritional and metabolic aspects of postprandial lipemia. Reproduction Nutrition Développement 36, 345355.CrossRefGoogle ScholarPubMed
Luhman, C. M., Faidley, T. D. & Beitz, D. C. (1992). Postprandial liporotein composition in pigs fed diets differing in type and amount of dietary fat. Journal of Nutrition 122, 120127.CrossRefGoogle Scholar
Mamo, J. C. L., Bowler, A., Elsegood, C. L. & Redgrave, T. (1991). Defective plasma clearance of chylomicron-like lipid emulsions in WHHL rabbits. Biochimica et Biophysica Acta 1081, 241245.CrossRefGoogle Scholar
Mann, C. J., Khallou, J., Chevreuil, O., Troussard, A. A., Guermani, L. M., Launay, K., Delplanque, B., Yen, F. T. & Bihain, E. B. (1995). Mechanism of activation and functional significance of the lipolysis-stimulated receptor. Evidence for a role as chylomicron remnant receptor. Biochemistry 34, 1042110431.CrossRefGoogle ScholarPubMed
Murphy, M. C., Ishervood, S. G., Sethi, S., Gould, B. J., Wright, J. W., Knapper, J. A. & Williams, C. M. (1995). Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase? European Journal of Clinical Nutrition 49, 579588.Google ScholarPubMed
Patsch, J. R., Miesenboch, G., Hopferwiser, T., Mühlferger, V., Knapp, E., Dunn, J. K., Gotto, A. M. & Patsch, W. (1992). Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arteriosclerosis and Thrombosis 12, 13361345.CrossRefGoogle ScholarPubMed
Redard, C. L., Davis, P. A, Middleton, S. J. & Schneeman, B. O. (1992). Postprandial lipid response following a high fat meal in rats adapted to dietary fiber. Journal of Nutrition 122, 219228.CrossRefGoogle ScholarPubMed
Redgrave, T. G., Roberts, D. C. K. & West, C. E. (1975). Separation of plasma lipoproteins by density gradient centrifugation. Analytical Biochemistry 65, 4249.CrossRefGoogle Scholar
Seidel, J., Hagele, E. O., Zingenhorn, J. & Wahlfeld, A. W. (1983). Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clinical Chemistry 29, 10751080.CrossRefGoogle Scholar
Simpson, H. S., Williamson, C. M., Olivecrona, T., Pringle, S., Maclean, A. R., Lorimer, A. R., Bonnefous, F., Bogaievsky, Y., Packard, C. J. & Shepherd, J. (1990). Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 85, 193202.CrossRefGoogle ScholarPubMed
Stender, S. & Zilversmit, D. (1982). Comparison of cholesteryl ester transfer from chylomicrons and other plasma lipoproteins to aortic intima media of cholesterol-fed rabbits. Arteriosclerosis 2, 493499.CrossRefGoogle ScholarPubMed
Takayama, M., Itoh, S., Nagasaki, T. & Tanimizu, I. (1977). A new enzymatic method for choline containing phospholipids. Clinica Chimica Acta 79, 9398.Google ScholarPubMed
Van Heek, M. & Zilversmit, D. B. (1990). Postprandial lipemia and lipoprotein lipase in the rabbit are modified by olive and coconut oil. Arteriosclerosis 10, 421429.CrossRefGoogle ScholarPubMed
Warren, R., Ebert, D., Barter, P. & Mitchell, A. (1991). The regulation of hepatic lipase and cholesteryl ester transfer protein activity in the cholesterol fed rabbit. Biochimica et Biophysica Acta 1086, 354358.CrossRefGoogle ScholarPubMed
Winer, B. J. (1971). Statistical Principles in Experimental Design. New York: McGraw-Hill.Google Scholar
Zilversmit, D. B. (1979). Atherogenesis: a postprandial phenomenon. Circulation 60, 473485.CrossRefGoogle ScholarPubMed