Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-05T04:21:43.815Z Has data issue: false hasContentIssue false

The phosphorylation state of casein and the species-dependency of its hypercholesterolaemic effect

Published online by Cambridge University Press:  09 March 2007

Roelof Van Der Meer
Affiliation:
Department of Nutrition, Netherlands Institute for Dairy Research, PO Box 20, 6710 BA Ede, The Netherlands
Hielke T. De Vries
Affiliation:
Department of Nutrition, Netherlands Institute for Dairy Research, PO Box 20, 6710 BA Ede, The Netherlands
Gerrit Van Tintelen
Affiliation:
Department of Nutrition, Netherlands Institute for Dairy Research, PO Box 20, 6710 BA Ede, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The present study concerns the question whether the hypercholesterolaemic effect of casein, a phosphorylated protein, is modified in species differing both in glycine-taurine conjugation of bile acids and in intestinal alkaline phosphatase (EC 3.1.3.1).

2. Since these two variables are entirely different in rabbits and rats, identical (cholesterol-free) semi-purified diets containing either casein or soya-bean protein were given to both species.

3. In rabbits casein, as compared with soya-bean protein, did not affect calcium absorption but immediately increased phosphate absorption and decreased faecal excretion of bile acids. These effects preceded the accumulation of apo B-cholesterol in serum, which indicates a cause-and-effect relation.

4. In contrast, none of these casein-specific effects were observed in rats.

5. These results suggest that the hypercholesterolaemic potential of casein is expressed mainly in species (like the rabbit) with a low activity of intestinal phosphatase and with a high glycine conjugation of bile acids. This might explain why species (like rat and man) are rather insensitive to dietary casein.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

Beynen, A. C., Terpstra, A. H. M., West, C. E. & Van Tintelen, G. (1983). Nutrition Reports International 28, 363374.Google Scholar
Beynen, A. C., Van der Meer, R. & West, C. E. (1986). Atherosclerosis 60, 291293.Google Scholar
Brown, M. S. & Goldstein, J. L. (1983). Journal of Clinical Investigation 72, 743747.Google Scholar
Burnstein, M. & Scholnick, H. R. (1973). Advances in Lipid Research 11, 67108.Google Scholar
Coleman, R., Iqbal, S., Godfrey, P. P. & Billington, D. (1979). Biochemical Journal 178, 201208.Google Scholar
Fiske, C. H. & Subbarow, Y. (1925). Journal of Biological Chemistry 66, 375400.Google Scholar
Grundy, S. M. & Abrams, J. J. (1983). American Journal of Clinical Nutrition 38, 245252.Google Scholar
Grundy, S. M., Ahrens, E. H. & Miettinen, T. A. (1965). Journal of Lipid Research 6, 397410.Google Scholar
Hardison, W. G. M. & Grundy, S. M. (1983). Gastroenterology 84, 617620.Google Scholar
Harzer, G. & Kauer, H. (1982). American Journal of Clinical Nutrition 35, 981987.Google Scholar
Keane, R., O'Grady, J. C., Scheil, J. P., Stevens, F. M., Egan-Mitchell, B., McNicholl, B., McCarthy, C. F. & Fottrell, P. F. (1983). Journal of Clinical Pathology 36, 7477.Google Scholar
Kuyvenhoven, M. J., West, C. E., Van der Meer, R. & Beynen, A. C. (1986). Journal of Nutrition 116, 13951404.CrossRefGoogle Scholar
La Font, H., Lairon, D., Vigne, J. L., Chanussot, F., Chabert, C., Portugal, H., Pauli, A. M., Crotte, C. & Hauton, J. C. (1985). Journal of Nutrition 115, 849855.Google Scholar
Leiss, O., Von Bergmann, K., Streicher, U. & Strotkoetter, H. (1984). Gastroenterology 87, 144145.CrossRefGoogle Scholar
Lorient, D. & Linden, G. (1976). Journal of Dairy Research 43, 1926.Google Scholar
McComb, R. B., Bowers, G. N. Jr & Posen, S. (1979). Alkaline Phosphatase, pp. 8188. New York and London: Plenum Press.Google Scholar
Nagata, Y., Imaizumi, K. & Sugano, M. (1980). British Journal of Nutrition 44, 113121.Google Scholar
Reynolds, F. C., Riley, P. F. & Storey, E. (1982). Calcified Tissue International 34, 5256.Google Scholar
Sacks, F. M., Breslow, J. L., Wood, P. G. & Kass, E. H. (1983). Journal of Lipid Research 24, 10121020.Google Scholar
Samman, S. & Roberts, D. C. K. (1984). Atherosclerosis 52, 347348.CrossRefGoogle Scholar
Samman, S. & Roberts, D. C. K. (1987). British Journal of Nutrition 57, 2733.CrossRefGoogle Scholar
Schuette, S. A. & Linkswiler, H. M. (1982). Journal of Nutrition 112, 338349.Google Scholar
Terpstra, A. H. M., Harkes, L. & Van der Veen, F. H. (1981). Lipids 16, 114119.Google Scholar
Terpstra, A. H. M., Hermus, R. J. J. & West, C. E. (1983). In Animal and Vegetable Protein in Lipid Metabolism and Atherosclerosis, pp. 1949 [Gibney, M. J. and Kritchevsky, D., editors]. New York: Alan R. Liss Inc.Google Scholar
Turley, S. D. & Dietschy, J. M. (1978). Journal of Lipid Research 19, 924928.Google Scholar
Van der Meer, R. (1983). Atherosclerosis 49, 339341.Google Scholar
Van der Meer, R. & De Vries, H. T. (1985). Biochemical Journal 229, 265268.Google Scholar
Van der Meer, R., De Vries, H. & Glatz, J. F. C. (1985 a). In Cholesterol Metabolism in Health and Disease: Studies in The Netherlands, pp. 113119 [Beynen, A. C., Geelen, M. J. H., Katan, M. B. and Schouten, J. A., editors]. Wageningen: Ponsen & Looijen.Google Scholar
Van der Meer, R., De Vries, H., West, C. E. & De Waard, H. (1985 b). Atherosclerosis 56, 139147.Google Scholar
Van der Meer, R., Schöningh, R. & De Vries, H. (1985 c). In Cholesterol Metabolism in Health and Disease: Studies in The Netherlands, pp. 151157 [Beynen, A. C., Geelen, M. J. H., Katan, M. B. and Schouten, J. A., editors]. Wageningen: Ponsen & Looijen.Google Scholar
Van Raaij, J. M. A., Katan, M. B., Hautvast, J. G. A. J. & Hermus, R. J. J. (1981). American Journal of Clinical Nutrition 34, 12611271.Google Scholar
West, C. E., Deuring, K., Schutte, J. B. & Terpstra, A. H. M. (1982). Journal of Nutrition 112, 12871295.Google Scholar