Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T19:29:59.778Z Has data issue: false hasContentIssue false

Nutritional availability of amino acids from protein cross-linked to protect against degradation in the rumen

Published online by Cambridge University Press:  09 March 2007

John R. Ashes
Affiliation:
CSIRO, Division of Animal Production, PO Box 239, Blacktown, NSW 2148, Australia
Jim L. Mangan
Affiliation:
AFRC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
Gurcharn S. Sidhu
Affiliation:
CSIRO, Division of Food Research, PO Box 52, North Ryde, NSW 2113, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Casein was labelled with pairs of radioactive amino acids, lysine, tyrosine and leucine, one with I4C and the other with 3H, by jugular infusion into lactating goats followed by isolation of the double-labelled casein from the milk. Total milk protein was similarly labelled by jugular infusion of [35S]cystine. U-14C-labelled fraction- 1 leaf protein was isolated from lucerne (Medicago sativa) grown in an atmosphere of 14C02

2. The proteins were treated withdifferent levels(333 and667 mmol/kgprotein) offormaldehyde, glutaraldehyde and glyoxal.

3. Absorption from the small intestine was measured in sheep with fistulas in the abomasum and terminal ileum, using Cr-EDTA as the digesta flow marker, by introducing radioactive casein into the abomasum.

4. Lysine, tyrosine and cystine became increasingly unavailable for absorption from the small intestine of sheep with increasing levels of aldehyde. At the lower level (333 mmol/kg) the proportions of the amino acids that were unavailable were 0.192, 0.051 and 0.123 respectively. At the higher level of formaldehyde (667 mmol/kg) the corresponding values were 0.335, 0.201 and 0.432 respectively. Leucine was not made unavailable with formaldehyde.

5. The proportions of lysine, tyrosine and leucine that were unavailable were higher, on a molar basis, after treatment of the proteins with the dialdehydes glutaraldehyde and glyoxal than after treatment with formaldehyde. However, the extent of protein protection provided by the dialdehydes in the rumen, measured using an in vitro procedure, was lower.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Achinewhu, S. C. & Hewitt, D. (1979). British journal of nutrition 41, 559571.CrossRefGoogle Scholar
Ashes, J. R., Gulati, S. K., Cook, L. J., Scott, T. W. &Donnelly, J. B. (1979). Journal of american oil chemists' society 56, 522527.CrossRefGoogle Scholar
Barry, T. N. (1976). Journal of agricultural science, cambridge 86, 379392.CrossRefGoogle Scholar
Binnerts, W. T., van 't klooster, A. T. & Frens, A. M. (1968). Veterinary record 82, 470.Google Scholar
Bodwell, C. E., Satterlee, L. D. & Hackler, L. R. (1980). American journal of clinical nutrition 33, 677686.CrossRefGoogle Scholar
Chalupa, W. (1975). Journal of dairy science 58, 11981218.CrossRefGoogle Scholar
Clark, J. H. (1975 a). In Protein nutritional quality of food and feeds, part 2 pp. 261304 [Freidman, M., editor]. New york: Marcel dekker inc.Google Scholar
Clark, J. H. (1975 b). Journal of dairy science 58, 11781197.CrossRefGoogle Scholar
Clark, J. H., Davis, C. L. & Hatfield, E. E. (1974). Journal of dairy science 57, 10311036.CrossRefGoogle Scholar
Clark, J. H., Spires, H. R., Derrig, R. G. & Bennink, M. R. (1977). Journal of nutrition 107, 631634.CrossRefGoogle Scholar
Coelho da silva, J. F., Seeley, R. C., Beever, D. E., Prescott, J. H. D. & Armstrong, D. G. (1972). British journal of nutrition 28, 357371.CrossRefGoogle Scholar
Corbet, J. L. & Edey, T. N. (1977). Australian journal of agricultural research 28, 491500.CrossRefGoogle Scholar
Dunn, M. S. (1949). Biochemical preparations 1, 2224.Google Scholar
Elliot, R. & Little, D. A. (1977). British journal of nutrition 37, 285287.CrossRefGoogle Scholar
Faichney, G. J. (1974). Australian journal of agricultural research 25, 583598.CrossRefGoogle Scholar
Faichney, G. J. & Weston, R. H. (1971). Australian journal of agricultural research 22, 461468.CrossRefGoogle Scholar
Faichney, G. J. & White, G. A. (1979). Australian journal of agricultural research 30, 11631175.CrossRefGoogle Scholar
Feeney, R. E., Blankenhorn, G. & Dixon, H. B. F. (1975). Advances in protein chemistry 29, 135203.CrossRefGoogle Scholar
Ferguson, K. A. (1975). In Digestion and metabolism in the ruminant, pp.448464 [McDonald, I. W. and Warner, A. C. I, editors].Armidale, NSW: University of new england publishing unit.Google Scholar
Friedman, M. & Gumbmann, M. R. (1981). Journal of nutrition 111, 13621369.CrossRefGoogle Scholar
Hagemeister, H. (1977). Proceedings of the second international symposium on protein metabolism and nutrition, pp. 5154.Wageningen, The Netherlands: Centre for agricultural publishing and documentation.Google Scholar
Hartnell, G. F. & Satter, L. D. (1978). Journal of animal science 47, 935943.CrossRefGoogle Scholar
Hecker, J. F. (1974). Experimental surgery on small animals, pp. 120129.London: Buttenvorths.Google Scholar
Hudson, L. W., Glimp, H. A., Little, C. O.& Woolfolk, P. G. (1969). Journal of animal science 28, 279282.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1978). Journal of agricultural and food chemistry 26, 796802.CrossRefGoogle Scholar
Johnson, A. B. & Hatfield, E. F. (1975). Journal of animal science 41, 406.Google Scholar
Kalberer, F. & Rutschmann, J. (1961). Helvetia chimica acta 44, 19561966.CrossRefGoogle Scholar
Macrae, J. C., Ulyatt, M. J., Pearce, P. D. & Hendtlass, J. (1972). British journal of nutrition 27, 3950.CrossRefGoogle Scholar
Mangan, J. & Bounden, J. (1965). In Third technicon amino acid colloquium, pp. 4656.Chertsey, Surrey: Technicon instrument co.Google Scholar
ørskov, E. R., Hughes-jones, M. & McDonald, I. (1980). In Recent advances in animal nutrition - 1980, pp. 8598 [Haresign, W., editor].London: Buttenvorths.Google Scholar
Peter, A. P., Hatfield, E. E., Owens, F. N. & Garrigus, U. S. (1971). Journal of nutrition 101, 605612.CrossRefGoogle Scholar
Reis, P. J. & Tunks, D. A. (1973). Australian journal of biological sciences 26, 11271136.CrossRefGoogle Scholar
Schmidt, S. P., Jorgensen, N. A., Benevenga, N. J. & Brungardt, V. H. (1973). Journal of animal science 37, 12331245.CrossRefGoogle Scholar
Sharma, H. R., Ingalls, J. R. & Parker, R. J. (1974). Canadian journal of animal science 54, 305313.CrossRefGoogle Scholar
Thomas, E., Trenkle, A. & Burroughs, W. (1979). Journal of animal science 49, 13461356.CrossRefGoogle Scholar
Van dooren, P. H. (1976). Journal of the science of food and agriculture 27, 5153.CrossRefGoogle Scholar
Varnish, S. A. & Carpenter, K. J. (1975). British journal of nutrition 34, 339349.CrossRefGoogle Scholar
Verite, R. & Journet, M. (1977). Annales de zootechnie 26, 183205.CrossRefGoogle Scholar
Waldo, D. R., Keys, J. E. Jr & Gordon, C. H. (1973). Journal of dairy science 56, 299332.Google Scholar
Walker, J. F. (1964). Formaldehyde, 3rd ed, pp. 399404.New york: Reinhold publishing corporation.Google Scholar
Williams, A. P. & Smith, R. H. (1976). British journal of nutrition 36, 199209.Google Scholar
Wilson, R. H. & Leibholz, J. (1981). British journal of nutrition 45, 347357.CrossRefGoogle Scholar