Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T12:58:08.879Z Has data issue: false hasContentIssue false

Nutritional aspects of amino acid metabolism

3.* The effects of diabetes on blood and liver amino acid concentrations in the rat

Published online by Cambridge University Press:  09 February 2010

D. L. Bloxam
Affiliation:
Department of Biochemistry, University College, London
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Measurements of the concentrations of amino acids in the plasma of blood from the portal vein and hepatic vein in the livers of rats made diabetic with streptozotocin or alloxan and starved for 1 d were compared with similar measurements from normal rats starved for 1 d.

2. The concentrations of many of the amino acids in the blood plasma were lower in the streptozotocin diabetic rats than in the normal animal while the liver concentrations tended to be increased. This suggests that there is enhanced concentration of these amino acids by the liver in diabetics, as is also found in starvation, which is probably due to factors other than the direct absence of insulin.

3. The direction of flow of the groups of amino acids into and out of the liver was unchanged in the diabetic compared with the normal rat except that the output of tryptophan was abolished, and that of the branched-chain group was abolished in alloxan diabetes though apparently enhanced in streptozotocin diabetes. The rates of movement of amino acids in both directions appeared to be increased in the streptozotocin diabetic animals.

4. The changed amino acid pattern in the alloxan diabetic rats was to some extent similar to that of the streptozotocin diabetic rats but the changes were more difficult to interpret, perhaps because of side-effects of alloxan on tissues including liver.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Arison, R. N., Ciaccio, E. I., Glitzer, M. S., Cassara, J. A. & Pruss, M. P. (1967). Diabetes 16, 51.CrossRefGoogle Scholar
Bearn, A. G., Billing, B. & Sherlock, S. (1952). Clin. Sci. 11, 151.Google Scholar
Beloff-Chain, A. & Rookledge, K. A. (1968). Biochem. J. 110, 529.CrossRefGoogle Scholar
Bloxam, D. L. (1971). Br. J. Nutr. 26, 393.CrossRefGoogle Scholar
Bloxam, D. L. (1972). Br. J. Nutr. 27, 233.CrossRefGoogle Scholar
Carlsten, A. & Werko, L. (1967). Acta med. scand. 181, 19.Google Scholar
Chambers, J. W., Georg, R. H. & Bass, A. D. (1965). Molec. Pharmac. 1, 66.Google Scholar
Christensen, H. N. (1964). In Mammalian Protein Metabolism Vol. 1, p.105 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.CrossRefGoogle Scholar
Clark, A. J., Yamada, C. & Swendseid, M. E. (1968).Am. J. Physiol. 215, 1324.CrossRefGoogle Scholar
Dulin, W. E., Lund, G. H. & Gerritsen, G. C. (1967). Diabetes 16, 512.Google Scholar
Elwyn, D. H., Parikh, H. C. & Shoemaker, W. C. (1968).Am. J. Physiol. 215, 1260.CrossRefGoogle Scholar
Exton, J. H., Jefferson, L. S., Butcher, R. W. & Park, C. R. (1966). Am. J. Med. 40, 709.CrossRefGoogle Scholar
Frame, E. G. (1958).J. clin. Invest. 37, 1710.CrossRefGoogle Scholar
Grayson, J. & Kinnear, T. (1958). J. Physiol., Lond. 144, 52.CrossRefGoogle Scholar
Ivy, J. H., Svec, M. & Freeman, S. (1951).Am. J. Physiol. 167, 182.CrossRefGoogle Scholar
Jefferson, L. S., Exton, J. H., Butcher, R. W., Sutherland, E. W. & Park, C. R. (1968). J. biol. Chem. 243, 103.CrossRefGoogle Scholar
Kalant, N. (1955). Am. J. Physiol. 182, 503..CrossRefGoogle Scholar
Kirsten, E., Kirsten, R., Hohorst., H. J. & Biicher, T. (1961). Biochem. biophys. Res. Commun. 4, 169.CrossRefGoogle Scholar
Lukens, F. D. W. (1948). Physiol. Rev. 28, 304.CrossRefGoogle Scholar
Mallette, L. E., Exton, J. H. & Park, C. R. (1969). J. biol. Chem. 24, 5724.CrossRefGoogle Scholar
Manchester, K. L. (1970). In Diabetes Mellitus: Theory and Practice Ch. 2, p. 28 [M, Ellenberg and H, Rifkin, editors]. New York: McGraw-Hill.Google Scholar
Mansford, K. R. L. & Opie, L. (1968). Lancet i, 670.CrossRefGoogle Scholar
Mondon, C. E. & Mortimore, G. E. (1967). Am. J. Physiol. 212, 173.CrossRefGoogle Scholar
Morita, Y. & Orten, J. M. (1950). Am. J. Physiol. 161, 545.CrossRefGoogle Scholar
Munro, H. N. (1964). In Mammalian Protein Metabolism Vol. I, p. 382 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.Google Scholar
Noall, M. W., Riggs, T. R., Walker, L. M. & Christensen, H. N. (1957). Science, N. Y. 126, 1002.CrossRefGoogle Scholar
Scharff, R. & Wool, I. G. (1966). Biochem. J. 99, 173.CrossRefGoogle Scholar
Shoemaker, W. C., Mahler, R., Ashmore, J. & Pugh, D. E. (1959). Am. J. Physiol. 196, 1250.CrossRefGoogle Scholar
Stowers, J. M. (1951). Clin. Sci. 10, 487.Google Scholar
Williamson, D. H., Lopes-Vieira, O. & Walker, B. (1967). Biochem. J. 104, 497.CrossRefGoogle Scholar