Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T02:25:47.681Z Has data issue: false hasContentIssue false

Non–digestible oligosaccharides and defense functions: lessons learned from animal models

Published online by Cambridge University Press:  09 March 2007

R. K. Buddington*
Affiliation:
Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762-5759, USA College of Veterinary Medicine, Mississippi State, MS 39762, USA
K. Kelly-Quagliana
Affiliation:
Department of Animal and Dairy Sciences, Mississippi State, MS 39762, USA
K. K. Buddington
Affiliation:
Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762-5759, USA
Y. Kimura
Affiliation:
Otsu Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd., 31-13 3-Chome Saigawa Otsu, Shiga 520-0002Japan
*
*Corresponding author: Dr R. K. Buddington, tel +0 662 325 7580, fax +0 662 325 7939, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Animals are constantly exposed to a diversity of health challenges and the gastrointestinal tract (GIT) is a major, if not the principal, site of exposure. Animal models and a limited number of human clinical studies have shown that the assemblages and metabolic activities of the resident bacteria are important determinants of the effectiveness of the various host defense mechanisms and thereby influence the ability of animals to respond to health challenges. The assemblages of bacteria resident in the GIT provide a first line of defense that can exclude invading pathogens, reduce the proliferation of opportunistic pathogens already resident in the GIT, and reduce the availability, carcinogenicity, or toxicity of noxious chemicals. The mucosa of the GIT is a second, multilayered line of defense that includes the mucous and other secretions, the epithelial cells, and immune-associated cells scattered within and under the epithelium. The final line of defense contends with pathogens or noxious chemicals that transcend the mucosal barrier and enter the host and consists of the innate and acquired components of the systemic immune system and the xenobiotic metabolizing enzymes. The lactic acid producing bacteria (LAB) are considered to be immunomodulatory and directly or indirectly influence the GIT and systemic defense functions. Corresponding with this, supplementing the diet with inulin, oligofructose, or other nondigestible oligosaccharides that increase the densities and metabolic capacities of the LAB enhances defense mechanisms of the host, increases resistance to various health challenges, and accelerates recovery of the GIT after disturbances.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Alles, MS, Hartemink, R, Meyboom, S, Harryvan, JL, Van Laere, KMJ, Nagengast, FM & Hautvast, JGAJ (1999) Effect of transgalactooligosaccharides on the composition of the human intestinal microflora and on putative risk markers for colon cancer. American Journal of Clinical Nutrition 69, 980991.CrossRefGoogle ScholarPubMed
Bailey, JS, Blankenship, LC & Cox, NA (1991) Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poultry Science 70, 24332438.CrossRefGoogle ScholarPubMed
Bengmark, S (1998) Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42, 27.CrossRefGoogle ScholarPubMed
Bengmark, S & Jeppsson, B (1995) Gastrointestinal surface protection and mucosa reconditioning. Journal of Parenteral and Enteral Nutrition 19, 410415.CrossRefGoogle ScholarPubMed
Berdanier, CD (1994) Advanced Nutrition: Macronutrients, Modern Nutrition, Vol. 1, Boca Raton, FL: CRC Press.Google Scholar
Berg, RD (1995) Inhibition of bacterial translocation from the gastrointestinal tract to the mesenteric lymph nodes in specific pathogen-free mice but not gnotobiotic mice by non-specific macrophage activation. Advances in Experimental Medicine and Biology 371A, 447452.CrossRefGoogle Scholar
Berg, RD & Savage, DC (1975) Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous and nonindigenous microorganisms. Infection and Immunity 11, 320329.CrossRefGoogle ScholarPubMed
Bovee-Oudenhoven, IMJ, Termont, DSML, Heidt, PJ & Van der Meer, R (1997) Increasing the intestinal resistance of rats to the invasive pathogen Salmonella enteritidis: additive effects of dietary lactulose and calcium. Gut 40, 497505.CrossRefGoogle Scholar
Bry, L, Falk, PG, Midtevedt, T & Gordon, JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273, 13801383.CrossRefGoogle Scholar
Buddington, KK, Donahoo, JB & Buddington, RK (2002) Dietary oligofructose and inulin provide mice with protection against enteric and systemic pathogens and tumor inducers. Journal of Nutrition 132, 8087.CrossRefGoogle Scholar
Carman, RJ, Van Tassel, RL & Wilkins, TD (1993) The normal intestinal microflora: ecology, variability and stability. Veterinary and Human Toxicology 35, 1114.Google ScholarPubMed
Catala, I, Butel, MJ, Bensaada, M, Popot, F, Tessedre, AC, Rimbault, A & Szylit, O (1999) Oligofructose contributes to the protective role of bifidobacteria in experimental necrotizing enterocolitis in quails. Journal of Medical Microbiology 48, 8994.CrossRefGoogle Scholar
Cavaglieri, CR, Martins, EF, Colleone, VV, Rodrigues, C, Vecchia, MG & Curi, R (2000) Fiber-rich diets alter rat intestinal leukocytes metabolism. Journal of Nutritional Biochemistry 11, 555561.CrossRefGoogle ScholarPubMed
Cebra, JJ (1999) Influences of microbiota on intestinal immune system development. American Journal of Clinical Nutrition 69, 1046S1051S.CrossRefGoogle ScholarPubMed
Chandra, G, Oli, M, Petschow, BW & Buddington, RK (1996) Changes in pig intestinal structure and functions and resident microbiota induced by acute secretory diarrhea. In Advances in Swine in Biomedical Research, pp. 769777, Chapter 67 [Tumbleson, ME and Shook, LA, editors]. New York, NY: Plenum Press.CrossRefGoogle Scholar
Chen, T, Isomaki, P, Rimpilainen, M & Toivanen, P (1999) Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota. Clinical and Experimental Immunology 118, 261267.CrossRefGoogle ScholarPubMed
Chinery, R, Goodland, RA & Wright, NA (1992) Soy polysaccharide in an enteral diet: effects on rat intestinal cell proliferation, morphology, and metabolic function. Clinical Nutrition 11, 277283.CrossRefGoogle Scholar
Cross, ML & Gill, HS (2001) Can immunoregulatory lactic acid bacteria be used as dietary supplements to limit allergies? Allergy and Immunology 126, 112119.CrossRefGoogle Scholar
Cummings, JH, Bingham, SA, Heaton, KW & Eastwookd, MA (1992) Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology 103, 17831789.CrossRefGoogle ScholarPubMed
Cunningham-Rundles, S & Lin, DH (1998) Nutrition and the immune system of the gut. Nutrition 14, 573579.CrossRefGoogle ScholarPubMed
Dai, D & Walker, WA (1999) Protective nutrients and bacterial colonization in the immature human gut. Advances in Pediatrics 46, 353382.CrossRefGoogle ScholarPubMed
Deitch, EA, Xu, D, Qi, L & Berg, R (1993) Elemental diet-induced immune suppression is caused by both bacterial and dietary factors. Journal of Parenteral and Enteral Nutrition 17, 332336.CrossRefGoogle ScholarPubMed
Deng, GY, Liu, YW, He, GZ & Jiang, ZM (1999) Effect of dietary fiber on intestinal barrier function of 5-FU stressed rats. Research in Experimental Medicine (Berlin) 199, 111119.CrossRefGoogle ScholarPubMed
Dewhirst, FE, Chien, C-C, Paster, BJ, Ericson, RL, Orcutt, RP, Schauer, DB & Fox, JG (1999) Phylogeny of the defined murine microbiota: Altered Schaedler Flora. Applied and Environmental Microbiology 65, 32873292.CrossRefGoogle ScholarPubMed
Duffy, LC (2000) Interactions mediating bacterial translocation in the immature intestine. Journal of Nutrition 130, 432S436S.CrossRefGoogle ScholarPubMed
Duffy, LC, Leavens, A, Griffiths, E & Dryja, D (1999) Perspectives on bifidobacteria as biotherapeutic agents in gastrointestinal health. Digestive Diseases and Sciences 44, 14991505.CrossRefGoogle ScholarPubMed
Erickson, KL & Hubbard, NE (2000) Probiotic immunomodulation in health and disease. Journal of Nutrition 130, 403S409S.CrossRefGoogle ScholarPubMed
Falk, PG, Hooper, LV, Midtvedt, T & Gordon, JI (1998) Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiology and Molecular Biology Reviews 62, 11571170.CrossRefGoogle ScholarPubMed
Field, CJ, McBurney, MI, Massimino, S, Hayek, MG & Sunvold, GD (1999) The fermentable fiber content of the diet alters the function and composition of canine gut associated lymphoid tissue. Veterinary Immunology and Immunopathology 72, 325341.CrossRefGoogle ScholarPubMed
Frankel, W, Zhang, W, Singh, A, Bain, A, Satchithanandam, S, Klurfeld, D & Rombeau, J (1995) Fiber: effect on bacterial translocation and intestinal mucin content. World Journal of Surgery 19, 144149.CrossRefGoogle ScholarPubMed
Fukata, T, Sasai, K, Miyamoto, T & Baba, E (1999) Inhibitory effects of competitive exclusion and fructooligosaccharide, singly and in combination, on Salmonella colonization of chicks. Journal of Food Protection 62, 229233.CrossRefGoogle ScholarPubMed
Fuller, R & Perdigon, G (2000) Probiotics 3: Immunomodulation by the Gut Microflora and Probiotics, pp.275Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Gaskins, HR, Mackie, RI, May, T & Garleb, KA (1996) Dietary fructo-oligosaccharides modulate large intestinal inflammatory responses to Clostridium difficile in antibiotic-compromised mice. Microbial Ecology in Health and Disease 9, 157166.CrossRefGoogle Scholar
Gautreaux, MD, Deitch, EA & Berg, RD (1994) T lymphocytes in host defense against bacterial translocation from the gastrointestinal tract. Infection and Immunity 62, 28742884.CrossRefGoogle ScholarPubMed
Gibson, GT & Roberfroid, MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125, 14011412.CrossRefGoogle ScholarPubMed
Guandalini, S, Pensabene, L, Zikri, MA, Dias, JA, Casali, LG, Hoekstra, H, Kolacek, S, Massar, K, Micetic-Turk, D, Papadopoulou, A, de Sousa, JS, Sandhu, B, Szajewska, H & Weizman, Z (2000) Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: A multicenter European trial. Journal of Pediatric Gastroenterology and Nutrition 30, 5460.Google ScholarPubMed
Hancock, REW & Scott, MG (2000) The role of antimicrobial peptides in animal defenses. Proceedings of the National Academy of Sciences 97, 88568861.CrossRefGoogle ScholarPubMed
Helgeland, L, Vaage, JT, Rolstad, B, Midtvedt, T & Brandtzaeg, P (1996) Microbial colonization influences composition and T-cell receptor V beta repertoire of intraepithelial lymphocytes in rat intestine. Immunology 89, 494501.CrossRefGoogle ScholarPubMed
Helsby, NA, Zhu, S, Pearson, AE, Tingle, MD & Ferguson, LR (2000) Antimutagenic effects of wheat bran diet through modification of xenobiotic metabolizing enzymes. Mutation Research 454, 7788.CrossRefGoogle Scholar
Herias, MV, Hessle, C, Telemo, E, Midtvedt, T, Hanson, LA & Wold, AE (1999) Immunomodulatory effect of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats. Clinical and Experimental Immunology 116, 283290.CrossRefGoogle ScholarPubMed
Honda, K, Matsumoto, T, Kuroki, F, Tida, M, Oka, M & Sawatani, I (1999) Protective effect of lactosucrose on intracolonic indomethacin-induced small intestinal ulcers in rats. Scandinavian Journal of Gastroenterology 34, 264269.Google ScholarPubMed
Hove, H, Nørgaard, H & Mortensen, PB (1999) Lactic acid bacteria and the human gastrointestinal tract. European Journal of Clinical Nutrition 53, 339350.CrossRefGoogle ScholarPubMed
Howard, MD, Gordon, DT, Pace, LW, Garleb, KA & Kerley, MS (1995) Effects of dietary supplementation with fructooligosaccharides on colonic microbiota populations and epithelial cell proliferation in neonatal pigs. Journal of Pediatric Gastroenterology and Nutrition 21, 297303.Google ScholarPubMed
Ichikawa, H & Sakata, T (1998) Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is nonadditive. Journal of Nutrition 128, 843847.CrossRefGoogle ScholarPubMed
Ikegami, S, Umegaki, K, Kawashima, Y & Ichikawa, T (1994) Viscous indigestible polysaccharides reduce accumulation of pentachlorobenzene in rats. Journal of Nutrition 124, 754760.CrossRefGoogle ScholarPubMed
Ilett, KF, Tee, LBG, Reeves, PT & Minchin, RF (1990) Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacology and Therapy 46, 6793.CrossRefGoogle ScholarPubMed
Imaoka, A, Matsumoto, S, Setoyama, H, Okada, Y & Umesaki, Y (1996) Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. European Journal of Immunology 26, 945948.CrossRefGoogle ScholarPubMed
Ishizuka, S, Ito, S, Kasai, T & Hara, H (2000) Dietary sugar beet fiber ameliorates diarrhea as an acute gamma-radiation injury in rats. Radiation Research 154, 261267.CrossRefGoogle ScholarPubMed
Kalliomäki, M, Kirjavainen, P, Eerola, E, Ker, P, Salminen, S & Isolauri, E (2001) Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. Journal of Allergy and Clinical Immunology 107, 129134.CrossRefGoogle Scholar
Kimura, Y, Nagata, Y, Bryant, CW & Buddington, RK (2002) Nondigestible oligosaccharides do not increase accumulation of lipid soluble environmental contaminants by mice. Journal of Nutrition 132, 8087.CrossRefGoogle Scholar
Kirjavainen, PV & Gibson, GR (1999) Healthy gut microflora and allergy: factors influencing development of the microbiota. Annals of Medicine 31, 288292.CrossRefGoogle ScholarPubMed
Kudoh, K, Shimizu, J, Ishiyama, A, Wada, M, Takita, T, Kanke, Y & Innami, S (1999) Secretion and excretion of immunoglobulin A to cecum and feces differ with type of indigestible saccharides. Journal of Nutritional Sciences Vitaminology 45, 173181.CrossRefGoogle ScholarPubMed
Lee, DJ, Drongowski, RA, Coran, AG & Harmon, CM (2000) Evaluation of probiotic treatment in a neonatal animal model. Pediatric Surgery International 16, 237242.CrossRefGoogle Scholar
Lefrancois, L & Goodman, T (1989) In vivo modulation of cytolytic activity and Thy-1 expression in TCR-+ intraepithelial lymphocytes. Science 243, 17161718.CrossRefGoogle Scholar
Letellier, A, Messier, S, Lessard, L & Quessy, S (2000) Assessment of various treatments to reduce carriage of Salmonella in swine. Canadian Journal Veterinary Research 64, 2731.Google ScholarPubMed
Lim, BO, Yamada, K, Nonaka, M, Kuramoto, Y, Hung, P & Sugano, M (1997) Dietary fibers modulate indices of intestinal immune function in rats. Journal of Nutrition 127, 663667.CrossRefGoogle ScholarPubMed
Maassen, C, Laman, JD, Boersma, WJA & Claassen, E (2000) Modulation of cytokine expression by lactobacilli and its possible therapeutic use. In Probiotics 3: Immunomodulation by the Gut Microflora and Probiotics, pp. 176192. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
MacDonald, TT & Pettersson, S (2000) Bacterial regulation of the intestinal immune responses. Inflammatory Bowel Diseases 6, 116122.CrossRefGoogle ScholarPubMed
Mack, DR & Sherman, PM (1991) Mucin isolated from rabbit colon inhibits in vitro binding of Escherichia coli RDEC-1. Infection and Immunity 59, 10151023.CrossRefGoogle ScholarPubMed
Mack, DR, Michail, S, Wei, S, McDougall, L & Hollingsworth, MA (1999) Probiotics inhibit enteropathogenic E coli adherence in vitro by inducing intestinal mucin gene expression. American Journal of Physiology 276, G941G950.Google ScholarPubMed
Macpherson, AJ, Gatto, D, Sainsbury, E, Harriman, GR, Hengartner, H & Zinkernagel, RM (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 222226.CrossRefGoogle ScholarPubMed
Madsen, KL, Malfair, D, Gray, D, Doyle, JS, Jewell, LD & Fedorak, RN (1999) Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflammatory Bowel Diseases 5, 262270.CrossRefGoogle ScholarPubMed
Malin, M, Suomalainen, H, Saxelin, M & Isolauri, E (1996) Promotion of IgA immune response in patients with Crohn's disease by oral bacteriotherapy with Lactobacillus GG. Annals of Nutrition and Metabolism 40, 137145.CrossRefGoogle ScholarPubMed
Mao, Y, Nobaek, S, Kasravi, B, Adawi, D, Stenram, U, Molin, G & Jeppsson, B (1996) The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111, 334344.CrossRefGoogle ScholarPubMed
May, T, Mackie, RI & Garleb, KA (1995) Effect of dietary oligosaccharides on intestinal growth and tissue damage by Clostridium difficile. Microecology and Therapy 23, 158170.Google Scholar
McCracken, VJ & Gaskins, HR (1999) Probiotics and the immune system. In Probiotics: A Critical Review, pp. 85111 [Tannock, GW, editor]. Wymondham, UK: Horizon Scientific Press.Google Scholar
Miake, S, Nomoto, K, Yokokura, T, Yoshikai, Y, Mutai, M & Nomoto, K (1985) Protective effect of Lactobacillus casei on Pseudomonas aeruginosa in mice. Infection and Immunity 48, 480485.CrossRefGoogle ScholarPubMed
Morita, K, Hirakawa, H, Matsueda, T, Iida, T & Tokiwa, H (1993) Stimulating effect of dietary fiber on fecal excretion of polychlorinated dibenzofurans (PCDF) and polychlorinated dibenzo-p-dioxins (PCDD) in rats. Fukuoka Igaku Zasshi 84, 273281.Google ScholarPubMed
Morita, K, Hamamura, K & Iida, T (1995) Binding of PCB by several types of dietary fiber in vivo and in vitro. Fukuoka Igaku Zasshi 86, 212217.Google ScholarPubMed
Muramatsu, T (1990) Gut microflora and tissue protein turnover in vivo in animals. International Journal of Biochemistry 22, 793800.CrossRefGoogle ScholarPubMed
Neish, AS, Gewirtz, AT, Zeng, H, Young, AN, Hobert, ME, Karmali, V, Rao, AS & Madara, JL (2000) Prokaryotic regulation of epithelial responses by inhibition of 1κBα-ubiquination. Science 289, 15601563.CrossRefGoogle Scholar
Nugon-Baudon, L, Rabot, S, Flinois, J-P, Lory, S & Beaune, Ph (1998) Effects of the bacterial status of rats on the changes in some liver cytochrome P450 (EC 1·14·14·1) apoproteins consequent to a glucosinolate-rich diet. British Journal of Nutrition 80, 231234.CrossRefGoogle ScholarPubMed
Oli, MW, Petschow, BW & Buddington, RK (1998) Evaluation of fructooligosaccharide supplementation of oral electrolyte solutions for treatment of diarrhea. Recovery of the intestinal bacteria. Digestive Diseases and Sciences 43, 138147.CrossRefGoogle ScholarPubMed
Peters, WHM, Kock, L, Nagengast, FM & Kremers, PG (1991) Biotransformation enzymes in human intestine: critical low levels in the colon? Gut 32, 408412.CrossRefGoogle ScholarPubMed
Pierre, F, Perrin, P, Bassonga, E, Bornet, F, Meflah, K & Menanteau, J (1999) T cell status influences colon tumor occurrence in min mice fed short chain fructo-oligosaccharides as a diet supplement. Carcinogenesis 20, 19531956.CrossRefGoogle Scholar
Pool-Zobel, BL, Neudecker, C, Domizlaff, I, Ji, S, Schillinger, U, Rumney, C, Moretti, M, Vilarini, I, Scassellati-Sforzolini, R & Rowland, I (1996) Lactobacillus-and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutrtition and Cancer 26, 365380.CrossRefGoogle ScholarPubMed
Pothoulakis, C (2000) Effects of Clostridium difficile toxins on epithelial cell barrier. Annals of the New York Academy of Sciences 915, 347356.CrossRefGoogle ScholarPubMed
Pratt, VC, Tappenden, KA, McBurney, MI & Field, CJ (1996) Short-chain fatty acid-supplemented total parenteral nutrition improves nonspecific immunity after intestinal resection in rats. Journal of Parenteral and Enteral Nutrition 20, 264271.CrossRefGoogle ScholarPubMed
Reddy, BS (1999) Possible mechanisms by which pro-and prebiotics influence colon carcinogenesis and tumor growth. Journal of Nutrition 129, 1478S1482S.CrossRefGoogle ScholarPubMed
Reilly, KJ, Frankel, WL, Bain, AM & Rombeau, JL (1995) Colonic short chain fatty acids mediate jejunal growth by increasing gastrin. Gut 37, 8186.CrossRefGoogle ScholarPubMed
Rembacken, BJ, Snelling, AM, Hawkey, PM, Chalmers, DM & Axon, ATR (1999) Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomized trial. Lancet 354, 635639.CrossRefGoogle Scholar
Rowland, IR, Mallett, AK, Flynn, J & Hargreaves, RJ (1986) The effect of various dietary fibers on tissue concentration and chemical form of mercury after methylmercury exposure in mice. Archives of Toxicology 59, 9498.CrossRefGoogle ScholarPubMed
Sakata, T, Ichikawa, H & Inagaki, A (1999) Influences of lactic acid, succinic acid and ammonia on epithelial cell proliferation and motility of the large bowel. Asia Pacific Journal of Clinical. Nutrition 8, S9S13.Google Scholar
Sato, K (1984) Enhancement of host resistance again Listeria infection by Lactobacillus casei: role of macrophages. Infection and Immunity 44, 445451.CrossRefGoogle ScholarPubMed
Schiffrin, EJ, Brassart, D, Servin, AL, Rochat, F & Donnet-Hughes, A (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. American Journal of Clinical Nutrition 66, 515S520S.CrossRefGoogle ScholarPubMed
Shanahan, F (2000) Probiotics and inflammatory bowel disease: Is there a scientific rationale. Inflammatory Bowel Diseases 6, 107115.CrossRefGoogle Scholar
Sharma, R & Schumacher, U (1995) Morphometric analysis of intestinal mucins under different dietary conditions and gut flora in rats. Digestive Diseases and Sciences 40, 25322539.CrossRefGoogle ScholarPubMed
Shimotoyodome, A, Meguro, S, Hase, T, Tokimitsu, I & Sakata, T (2000) Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comparative Biochemistry and Physiology 125A, 525531.CrossRefGoogle Scholar
Shirazi, T, Longman, RJ, Corfield, AP & Probert, CSJ (2000) Mucins and inflammatory bowel disease. Postgraduate Medical Journal 76, 473478.CrossRefGoogle ScholarPubMed
Simpson, JW (1998) Diet and large intestinal disease in dogs and cats. Journal of Nutrition 128, 2717S2722S.CrossRefGoogle ScholarPubMed
Spaeth, G, Gottwald, T, Specian, RD, Mainous, MR, Berg, RD & Deitch, EA (1994) Secretory immunoglobulin A, intestinal mucin, and mucosal permeability in nutritionally induced bacterial translocation in rats. Annals of Surgery 220, 798808.CrossRefGoogle ScholarPubMed
Spaeth, G, Berg, RD, Specian, RD & Deitch, EA (1990) Food without fiber promotes bacterial translocation from the gut. Surgery 108, 240246.Google ScholarPubMed
Szilagyi, A (1997) Altered colonic environment, a possible predisposition to colorectal cancer and colonic inflammatory bowel disease: Rationale of dietary manipulation with emphasis on disaccharides. Canadian Journal of Gastroenterology 12, 133146.CrossRefGoogle Scholar
Taga, T & Kishimoto, T (1995) Signaling mechanisms through cytokine receptors that share signal transducing receptors components. Current Opinions in Immunology 7, 1723.CrossRefGoogle Scholar
Taper, HS, Lemort, C & Roberfroid, MB (1998) Inhibition effect of dietary inulin and oligofructose on the growth of transplantable mouse tumor. Anticancer Research 18, 41234126.Google ScholarPubMed
Tappenden, KA & McBurney, MI (1998) Systemic short-chain fatty acids rapidly alter gastrointestinal structure, function, and expression of early response genes. Digestive Diseases and Sciences 43, 15261536.CrossRefGoogle ScholarPubMed
Tappenden, KA, Thomson, ABR, Wild, G, Tappenden, E & McBurney, MI (1996) Short-chain fatty acids increase proglucagon and ornithine decarboxylase messenger RNAs after intestinal resection in rats. Journal of Parenteral and Enteral Nutrition 20, 357362.CrossRefGoogle ScholarPubMed
Tappenden, KA, Thomson, ABR, Wild, G, Tappenden, E & McBurney, MI (1997) Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats. Gastroenterology 112, 792802.CrossRefGoogle ScholarPubMed
Thompson, A (1994) The Cytokine Handbook. San Diego: Academic Press.Google Scholar
Umesaki, Y & Setoyama, H (2000) Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes and Infection 2, 13431351.CrossRefGoogle Scholar
Uzzau, S & Fasano, A (2000) Cross-talk between enteric pathogens and the intestine. Cell and Microbiology 2, 8389.CrossRefGoogle ScholarPubMed
Vahouny, GV, Le, T, Ifrim, I, Satchithanandam, S & Cassidy, MM (1985) Stimulation of intestinal cytokinetics and mucin turnover in rats fed wheat bran or cellulose. American Journal of Clinical Nutrition 41, 895900.CrossRefGoogle ScholarPubMed
Vanderhoof, JA, Whitney, DB, Antonson, DL, Hanner, TL, Lupo, JV & Young, RJ (1999) Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. Journal of Pediatrics 135, 564568.CrossRefGoogle ScholarPubMed
Wachtershauser, A & Stein, J (2000) Rationale for the luminal provision of butyrate in intestinal diseases. European Journal of Nutrition 39, 164171.Google ScholarPubMed
Yolken, RH, Ojeh, C, Khatri, IA, Khatri, A, Sajjan, U & Forstner, JF (1994) Intestinal mucins inhibit rotavirus replication in an oligosaccharide-dependent manner. Journal of Infectious Diseases 169, 10021006.CrossRefGoogle Scholar
Zachar, Z & Savage, DC (1979) Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infection and Immunity 23, 168174.CrossRefGoogle ScholarPubMed