Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T20:49:20.110Z Has data issue: false hasContentIssue false

Nitrogen balance studies with the milk-fed lamb

5.* Effect of frequency of feeding

Published online by Cambridge University Press:  09 March 2007

D. M. Walker
Affiliation:
Department of Animal Husbandry, University of Sydney, Australia
L. J. Cook
Affiliation:
Department of Animal Husbandry, University of Sydney, Australia
K. T. Jagusch
Affiliation:
Department of Animal Husbandry, University of Sydney, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Thirty-three cross-bred lambs were given reconstituted dried whole cow's milk from 1 week of age at different levels of intake and at different frequencies of feeding.

2. Feeding frequency had no effect on live-weight gain, N retention or total body composition.

3. Lambs given two feeds daily had significantly heavier abomasums than pair-fed lambs given six feeds daily.

4. The weights of fat, protein (N x 6.25) and water in the body were closely related to empty body weight; body composition (% of empty body) was not significantly affected by the level of milk intake or by the rate of growth.

5. Live-weight gain was closely related to energy intake (r = +0.99) and to N retention (r = +0.97). A live-weight gain of 100 g was associated with an intake of 511 kcal and a N retention of 2.28 g N.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Armsby, H. P., & Moulton, C. R. (1925). The Animal as a Converter of Matter and Energy. New York: The Chemical Catalog Company, Inc.Google Scholar
Blaxter, K. L. & Wood, W. A. (1951). Br. J. Nutr. 5 55.CrossRefGoogle Scholar
Braude, R, Towensend, M.J., Harrington, G. & Rowell, J.G. (1963). J. agri. sci., camb., 60, 389.CrossRefGoogle Scholar
Brisson, G. J., Cunningham, H. M. & Haskell, S.R. (1957) Can. J. Anim. Sci. 37, 157.CrossRefGoogle Scholar
Burris, M.J. & Baugus, C. A. (1955). J. Anim. Sci. 14, 186.CrossRefGoogle Scholar
Chanutin, A. & Mendel, L. B. (1922). J. metab. Res. 1, 481.Google Scholar
Cohn, C (1962) Nutr. Rev. 20, 321.CrossRefGoogle Scholar
Cohn, C (1963) Ann. N.Y. Acad. Sci. 110, 395.CrossRefGoogle Scholar
Cohn, C & Joseph, D (1959) Am. J. Physiol. 196, 965.CrossRefGoogle Scholar
Cohn, C., Joseph, D. & Shrago, E. (1957). Metabolism 6, 381.Google Scholar
Cohn, C, Joseph, D, Bell, L & Frigerio, N. A. (1964) Proc. Soc. exp. Biol. Med. 115, 1057.CrossRefGoogle Scholar
Cohn, C, Joseph, D, Bell, L & Oler, A (1963) Am. J. Physiol. 205, 71.CrossRefGoogle Scholar
Feigenbaum, A. S., Fisher, H & Weiss, H. S. (1962). Am. J. clin. Nutr. 11, 312.CrossRefGoogle Scholar
Friend, D.W. & Cunningham, H. M. (1964) J. Nutr., 83, 251.CrossRefGoogle Scholar
Gebhardt, F (1897). Arch. ges. Physiol. 65, 611.CrossRefGoogle Scholar
von Hoesslin, H. & Lesser, E. J. (1911). Hoppe-Seyler's Z. physiol. Chem. 73, 345.CrossRefGoogle Scholar
Kleiber, M. (1961). The Fire of Life, 319. New York: John Wiley and Sons.Google Scholar
Krummacher, O (1896) Z. Biol. 33, 108.Google Scholar
Leveille, G. A. & Hanson, R. W. (1966). J. Lipid Res. 7, 46.Google Scholar
Leverton, R. M. & Gram, M. R. (1949) J. Nutr. 39, 57.Google Scholar
Ling, E. R., Kon, S. K. & Porter, J. W. G. (1961). In Milk: the Mammary Gland and Its Secretion. Vol. 2, 195. [Kon, S. K. and Cowie, A. T., editors.] New York: Academic Press Inc.CrossRefGoogle Scholar
Mitchell, H. H. (19231924). J. biol. Chem. 58, 905.CrossRefGoogle Scholar
Mochrie, R. D. (1964). Fedn Proc. Fedn Am. Socs exp. Biol. 23, 85.Google Scholar
Munro, J. (1955). Agric. Progr. 30, 129.Google Scholar
Munro, J. (1962). Anim. Prod. 4, 203.Google Scholar
Peirce, A. W. (1934). Aust. J. exp. Biol. Med. Sci. 12, 7.CrossRefGoogle Scholar
Perrin, D.R. (1958). J. Dairy Res. 25, 215.CrossRefGoogle Scholar
Rakes, A. H., Lister, E. E. & Reid, J. T. (1961). J. Nutr. 85, 86.CrossRefGoogle Scholar
Roy, J. H. B., Gaston, H. J., Shillam, K. W. G., Thompson, S. Y., Stobo, I. J. F. & Greatorex, J. C. (1964). Br. J. Nutr. 18, 467.Google Scholar
Shortridge, L. J. & Linkswiler, H. (1963). Fedn Proc. Fedn Am. Socs exp. Biol. 22, 320.Google Scholar
Snedecor, G.W. (1956). Statistical Methods, 5th ed. Iowa: The Iowa State University Press.Google Scholar
Tepperman, H. M. & Tepperman, J. (1964). Fedn Proc. Fedn Am. Socs exp. Biol. 23, 73.Google Scholar
Voelker, H. & Jacobson, N. L. (1953). J. Dairy Sci. 36, 592.Google Scholar
Walker, D.M. (1950). Bull. Anim. Behav. 8, 5.Google Scholar
Walker, D.M. & Cook, L. J. (1967). Br. J. Nutr. 21, 237.CrossRefGoogle Scholar
Walker, D.M. & Faichney, G. J. (1964 a). Br. J. Nutr. 18, 187.Google Scholar
Walker, D.M. & Faichney, G.J. (1964 b). Br. J. Nutr. 18, 201.CrossRefGoogle Scholar
Walker, D.M. & Faichney, G. J. (1964 c). Br. J. Nutr. 18, 209.CrossRefGoogle Scholar
Walker, D. M. & Faichney, G. J. (1964 d). Br. J. Nutr. 18, 295.Google Scholar
Wallace, L. R. (1948). J. agric. Sci., Camb. 38, 93.CrossRefGoogle Scholar
Wu, H. & Wu, D. Y. (1950). Proc. Soc. exp. Biol. Med. 74, 78.CrossRefGoogle Scholar