Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T05:31:13.589Z Has data issue: false hasContentIssue false

The nitrogen and energy metabolism of lactating cows given abomasal infusions of casein

Published online by Cambridge University Press:  09 March 2007

F. G. Whitelaw
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
J. S. Milne
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
E. R. Ørskov
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
J. S. Smith
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Four cows in early lactation were given continuous infusion into the abomasum of 0, 200, 400 or 600 g lactic casein/d according to a Latin-square design. Each period was of 14 d and the Latin square was followed by 7 d in which an infusion of 800 g glucose/d was given. The basal diet was given at a level which provided sufficient nitrogen and energy for 10 kg milk yield/d.

2. Infusion of casein resulted in significant increases in milk yield, milk N yield and milk energy yield; milk N increased progressively but milk energy reached a maximum at 400 g casein/d. Milk yields and composition when glucose was infused resembled those seen on the zero casein treatment.

3. N-balance measurements indicated a severe deficit (–20 g/d) on the zero casein treatment and a progressive increase to +7 g/d as casein increased; N equilibrium was achieved at about 400 g casein/d. The regression of net productive N on N intake (P < 0.001) indicated that the efficiency of utilization of dietary N did not differ between treatments.

4. Heat production increased with increase in casein infused (P < 0.05) but remained a constant proportion of the metabolizable energy (ME) intake. Energy balances were negative and did not differ significantly between treatments but calculation of the protein and fat components indicated a threefold increase in body fat mobilization in response to the first increment of casein. Milk yield adjusted to zero energy balance was significantly related to ME intake (P < 0.001) but the efficiency of encrgy utilization was not affected by the level of casein infusion.

5. The concentrations of glucose, β-hydroxybutyrate and non-esterified fatty acids in plasma did not differ between treatments but the concentration of urea in plasma increased markedly (P < 0.05) at the highest level of casein addition. Insulin concentrations increased and growth hormone decreased (both P < 0.05) with increase in casein infusion.

6. The concentration of total amino acids (AA) in plasma increased up to 400 g casein/d and then declined. Changes in concentration and in the ratio of essential: total AA indicated a very high extraction rate of essential AA at the lower levels of casein infusion.

7. The observed lactational responses are discussed in relation to the ratio of protein:energy in the absorbed nutrients. It is concluded that the primary response to casein was the correction of an AA deficit and that body fat mobilization was secondary and occurred in response to the high ratio of AA-N:energy in the infused casein.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal, Slough: Commonwealth Agricultural Bureaux.Google Scholar
Agricultural Research Council (1984). The Nutrient Requirements of Ruminant Livestock, Suppl. no. 1. Farnham Royal, Slough: Commonwealth Agricultural Bureaux.Google Scholar
Bassett, J. M. & Thornburn, G. D. (1971). Journal of Endocrinology 50, 5974.CrossRefGoogle Scholar
Bauman, D. E. & Elliot, J. M. (1983). In Biochemistry of Lactation, pp. 437468 [Mepham, T. B., editor]. Amsterdam: Elsevier.Google Scholar
Bines, J. A. & Hart, I. C. (1982). Journal of Dairy Science 65, 13751389.CrossRefGoogle Scholar
Blaxter, K. L., Brockway, J. M. & Boyne, A. W. (1972). Quarterly Journal of Experimental Physiology 57, 6072.CrossRefGoogle Scholar
Blaxter, K. L. & Martin, A. K. (1962). British Journal of Nutrition 16. 397407.CrossRefGoogle Scholar
Botts, R. L., Hemken, R. W. & Bull, L. S. (1979). Journal of Dairy Science 62, 433440.CrossRefGoogle Scholar
Brouwer, E. (1965). In Energy Metabolism: Proceedings of 3rd Symposium on Energy Metabolism, Troon, EAAP Publication no. 11, p. 441 [Blaxter, K. L., editor]. London: Academic Press.Google Scholar
Clark, J. H. (1975). Journal of Dairy Science 58, 11781197.CrossRefGoogle Scholar
Clark, J. H., Spires, H. R., Derrig, R. G. & Bennink, M. R. (1977). Journal of Nutrition 107, 631644.CrossRefGoogle Scholar
Cowan, R. T., Reid, G. W., Greenhalgh, J. F. D. & Tait, C. A. G. (1981 a). Journal of Dairy Research 48, 201212.CrossRefGoogle Scholar
Cowan, R. T., Robinson, J. J., Greenhalgh, J. F. D. & McHattie, I. (1979). Animal Production 29, 8190.Google Scholar
Cowan, R. T., Robinson, J. J., McDonald, I. & Smart, R. I. (1980). Journal of Agricultural Science, Cambridge 95, 497514.CrossRefGoogle Scholar
Cowan, R. T., Robinson, J. J., McHattie, I. & Pennie, K. (1981 b). Animal Production 33, 111120.Google Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst 95, 181193.CrossRefGoogle Scholar
Derrig, R. G., Clark, J. H. & Davis, C. L. (1974). Journal of Nutrition 104, 151159.CrossRefGoogle Scholar
Farhan, S. M. A. & Thomas, P. C. (1977). Proceedings of the Nutrition Society 36, 57A.Google Scholar
Gaines, W. L. & Overman, O. R. (1938). Journal of Dairy Science 21, 261271.CrossRefGoogle Scholar
Galbraith, H. & Chesworth, J. M. (1977). Laboratory Practice 26, 471472.Google Scholar
Gow, C. B., Ranawana, S. S. E., Kellaway, R. C. & McDowell, G. H. (1979). British Journal of Nutrition 41, 371382.CrossRefGoogle Scholar
Istasse, L. (1984). The effect of method of feeding and type of feed on ruminant digestion and host animal metabolism. PhD Thesis, University of Aberdeen.Google Scholar
König, B. A., Oldham, J. D. & Parker, D. S. (1984). British Journal of Nutrition 52, 319328.CrossRefGoogle Scholar
Kronfeld, D. S. (1976). Advances in Animal Physiology and Animal Nutrition 7, 526.Google Scholar
Kronfeld, D. S., Donoghue, S., Naylor, J. M., Johnson, K. & Bradley, C. A. (1980). Journal of Dairy Science 63, 545552.CrossRefGoogle Scholar
Ling, E. R. (1944). A Textbook of Dairy Chemistry, 2nd ed., vol. 2. London: Chapman and Hall.Google Scholar
McCarthy, R. D., Porter, G. A. & Griel, L. C. (1968). Journal of Dairy Science 51, 459462.CrossRefGoogle Scholar
MacLeod, N. A., Corrigall, W., Stirton, R. A. & Ørskov, E. R. (1982). British Journal of Nutrition 47, 547552.CrossRefGoogle Scholar
MacRae, J. C. (1983). In Recent Advances in Animal Nutrition in Australia, pp. 2334 [Farrell, D. J. and Pran, Vohra, editors]. Armidale: University of New England Publishing Unit.Google Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clinical Chemistry 11, 624627.CrossRefGoogle Scholar
Martin, A. K. & Blaxter, K. L. (1961). Proceedings of the 2nd International Symposium on Energy Metabolism, EAAP Publication no. 10, pp. 200210.Google Scholar
Mepham, T. B. (1982). Journal of Dairy Science 65, 287298.CrossRefGoogle Scholar
Ministry of Agriculture, Fisheries and Food (1975). Energy Allowances and Feeding Systems for Ruminants, Technical Bulletin no. 33. London: H.M. Stationery Office.Google Scholar
Moe, P. W., Tyrell, H. F. & Flatt, W. P. (1971). Journal of Dairy Science 54, 548553.CrossRefGoogle Scholar
Oldham, J. D. (1981). In Recent Developments in Ruminant Nutrition, pp. 4981 [Haresign, W. and Cole, D. J. A., editors]. London: Butterworths.CrossRefGoogle Scholar
Oldham, J. D. (1984). Journal of Dairy Science 67, 10901114.CrossRefGoogle Scholar
Oldham, J. D., Bines, J. A. & MacRae, J. C. (1984). Proceedings of the Nutrition Society 43, 65A.Google Scholar
Oldham, J. D. & Lindsay, D. M. (1983). Proceedings of the IVth International Symposium on Protein Metabolism and Nutrition, Clermont-Ferrand, France.Google Scholar
Oldham, J. D. & Tamminga, S. (1980). Livestock Production Science 7, 437452.CrossRefGoogle Scholar
Ørskov, E. R., Grubb, D. A. & Kay, R. N. B. (1977). British Journal of Nutrition 38, 397405.CrossRefGoogle Scholar
Ørskov, E. R., Reid, G. W., Holland, S. M., Tait, C. A. G. & Lee, N. H. (1983). Animal Feed Science and Technology 8, 247257.CrossRefGoogle Scholar
Ørskov, E. R., Reid, G. W. & McDonald, I. (1981). British Journal of Nutrition 45, 547555.CrossRefGoogle Scholar
Ottenstein, D. M. & Bartley, D. A. (1971). Journal of Chromatographic Science 9, 673681.CrossRefGoogle Scholar
Palmer, D. W. & Peters, J. T. (1969). Clinical Chemistry 19, 891901.CrossRefGoogle Scholar
Ranawana, S. S. E. & Kellaway, R. C. (1977 a). British Journal of Nutrition 37, 6779.CrossRefGoogle Scholar
Ranawana, S. S. E. & Kellaway, R. C. (1977 b). British Journal of Nutrition 37, 395402.CrossRefGoogle Scholar
Reid, J. T., Wellington, G. H. & Dunn, H. O. (1955). Journal of Dairy Science 38, 13441359.CrossRefGoogle Scholar
Robinson, J. J., Fraser, C., Gill, J. C. & McHattie, I. (1974). Animal Production 19, 331339.Google Scholar
Robinson, J. J., McHattie, I., Calderon-Cortez, F. & Thompson, J. L. (1979). Animal Production 29, 257269.Google Scholar
Rulquin, H. (1982). Reproduction, Nutrition Developpment 22, 905921.CrossRefGoogle Scholar
Rulquin, H. (1983). Reproduction, Nutrition Developpment 23, 10291042.CrossRefGoogle Scholar
Schlenk, M. & Gellerman, J. (1960). Analytical Chemistry 32, 14121414.CrossRefGoogle Scholar
Schwab, C. G., Satter, L. D. & Clay, A. B. (1976). Journal of Dairy Science 59, 12541270.CrossRefGoogle Scholar
Sparrow, R. C., Hemken, R. W., Jacobsen, D. R., Button, F. S. & Enlow, C. M. (1973). Journal of Dairy Science 56, 664. Abstr.Google Scholar
Spires, H. R., Clark, J. H., Derrig, R. G. & Davis, C. L. (1975). Journal of Nutrition 105, 11111121.CrossRefGoogle Scholar
Trigg, T. E., Parr, C. R., Day, A. M. & Parsons, B. W. (1983). In Energy Metabolism of Farm Animals, EAAP Publication no. 29, pp. 4245 [Akern, A. and Sundstel, F., editors]. Ski, Norway: Informasjonsteknikk A/S.Google Scholar
Trinder, P. (1969). Annals of Clinical Biochemistry 6, 2427.CrossRefGoogle Scholar
Tyrrell, H. F. & Moe, P. W. (1980). In Energy Metabolism, pp. 311313 [Mount, L. E., editor]. London: Butterworths.CrossRefGoogle Scholar
Vermorel, M., Remond, B., Vernet, J. & Liamadis, D. (1983). In Energy Metabolism of Farm Animals, EAAP Publication no. 29, pp. 1821 [Akern, A. and Sundstøl, F., editors]. Ski, Norway: Informasjonsteknikk A/S.Google Scholar
Whitelaw, F. G., Milne, J. S., Ørskov, E. R. & Smith, J. S. (1985). Proceedings of the Nutrition Society 44, 44A.Google Scholar
Zivin, J. A. & Snarr, J. F. (1973). Analytical Biochemistry 52, 456461.CrossRefGoogle Scholar