Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T14:46:38.007Z Has data issue: false hasContentIssue false

New inhibitors of methane production by rumen micro-organisms. Development and testing of inhibitors in vitro

Published online by Cambridge University Press:  09 March 2007

J. W. Czerkawski
Affiliation:
The Hannah Research Institute, Ayr KA6 5HL, Scotland
Grace Breckenridge
Affiliation:
The Hannah Research Institute, Ayr KA6 5HL, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A procedure is described for assaying in vitro the activity of various inhibitors of methane production by rumen micro-organisms.

2. Methods of preparation of various inhibitors are described together with attempts to characterize these compounds by determining their physical properties (physical state, density, chromatographic behaviour), their hydrolysis by rumen contents and their relative potency as inhibitors.

3. The results of preliminary studies with trichloroethanol and its ester with pivalic acid are given.

4. The inhibitory activities of several groups of related compounds are reported. These include the polyhalogenated alcohols and their esters with pivalic acid, the esters of trihalogenated alcohols and monobasic fatty acids from C2 to C16 and the trihalogenated alcohol esters of dibasic acids. The results of experiments with esters of alcohols and polyhalogenated carboxylic and sulphonic acids are also given.

5. It is concluded that the mechanism of action of the inhibitors might be similar to that of known polyhalogenated methane analogues (e.g. chloroform). The relative activity of various compounds might be partly governed by the ease of their absorption into the microbial cells and by the extent to which the esters can be hydrolysed by rumen contents.

6. The results show that some substances are very poor inhibitors, unless they are esterified (e.g. trichloroacetic acid) but on the whole the esters in which the polyhalogen grouping is on the alcohol portion of the molecule are better inhibitors than those in which it is on the acid portion of the molecule.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Bauchop, T. (1967). J. Bact. 94, 171.CrossRefGoogle Scholar
Blaxter, K. L. & Czerkawski, J. W. (1966). J. Sci. Fd Agric. 17, 417.CrossRefGoogle Scholar
Brot, N., Taylor, R. & Weissbach, H. (1966). Archs Biochem. Biophys. 114, 256.CrossRefGoogle Scholar
Clapperton, J. L. & Czerkawski, J. W. (1971). Br. J. Nutr. 26, 459.CrossRefGoogle Scholar
Cottyn, B. G. & Boucque, C. V. (1968). J. agric. Fd Chem. 16, 105.CrossRefGoogle Scholar
Crane, A., Nelson, W. O. & Brown, R. E. (1957). J. Dairy Sci. 40, 1317.CrossRefGoogle Scholar
Czerkawski, J. W. (1972). Proc. Nutr. Soc. 31, 141.CrossRefGoogle Scholar
Czerkawski, J. W. (1973). Process Biochem. 8, 25.Google Scholar
Czerkawski, J. W., Blaxter, K. L. & Wainman, F. W. (1966). Br. J. Nutr. 20, 349.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1970). Lab. Pract. 19, 717.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1972). Br. J. Nutr. 27, 131.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1973). Br. J. Nutr. 29, 317.CrossRefGoogle Scholar
Demeyer, D. I. & Henderickx, H. K. (1967). Biochim. biophys. Acta 137, 484.CrossRefGoogle Scholar
Henderson, C. (1973). J. agric. Sci., Camb. 81, 107.CrossRefGoogle Scholar
Hogenkamp, H. P. C. (1965). Biochemistry, Easton 5, 417.CrossRefGoogle Scholar
Johnson, D. E. (1972). J. Anim. Sci. 35, 1064.CrossRefGoogle Scholar
Johnson, D. E., Wood, A. S., Store, J. B. & Morgan, E. T. (1972). Can. J. Anim. Sci. 52, 703.CrossRefGoogle Scholar
McBride, B. C. & Wolfe, R. S. (1971). Nature, Lond. 234, 551.CrossRefGoogle Scholar
Marty, R. J. & Demeyer, D. I. (1973). Br. J. Nutr. 30, 369.CrossRefGoogle Scholar
Noordam, M. A., Manten, A. & Muller, F. M. (1949). Antonie van Leeuwenhoek 15, 65.CrossRefGoogle Scholar
Prins, R. A. (1965). J. Dairy Sci. 48, 991.CrossRefGoogle Scholar
Prins, R. A., Van Nevel, C. J. & Demeyer, D. I. (1972). Antonie van Lecuwenhoek 38, 281.CrossRefGoogle Scholar
Rufener, W. H. Jr & Wolin, M. J. (1968). Appl. Microbiol. 16, 1955.CrossRefGoogle Scholar
Sawyer, M. S., Hoover, W. H. & Sniffen, C. J. (1974). J. Anim. Sci. 38, 908.CrossRefGoogle Scholar
Singh, Y. K. & Trei, J. E. (1971). Fedn Proc. Fedn Am. Socs exp. Biol. 30, 404 Abstr.Google Scholar
Trei, J. E., Parish, R. C., Singh, Y. K. & Scott, G. C. (1971). J. Dairy Sci. 54, 536.CrossRefGoogle Scholar
Trei, J. E., Scott, G. C. &Parish, R. C. (1972). J. Anim. Sci. 34, 510.CrossRefGoogle Scholar
Van Nevel, C. J., Henderickx, H. K., Demeyer, D. I. & Martin, J. (1969). Appl. Microbiol. 17, 695.CrossRefGoogle Scholar
Wolin, E. A., Wolfe, R. S. & Wolin, M. J. (1964). J. Bact. 87, 993.CrossRefGoogle Scholar
Wood, J. M., Kennedy, F. S. & Wolfe, R. S. (1968). Biochemistry, Easton 7, 1707.CrossRefGoogle Scholar
Wood, J. M. & Wolfe, R. S. (1966). Biochemistry, Easton 5, 3598.CrossRefGoogle Scholar