Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T17:34:22.788Z Has data issue: false hasContentIssue false

Net energy value of non-starch polysaccharide isolates (sugarbeet fibre and commercial inulin) and their impact on nutrient digestive utilization in healthy human subjects

Published online by Cambridge University Press:  09 March 2007

C. Castiglia-Delavaud
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, INRA, UR Métabolismes Energétique et Lipidique Centre de Recherches de Clermont-Ferrand/Theix, 63122 Saint-Genès Champanelle, France
E. Verdier
Affiliation:
Université d'Auvergne, Laboratoire de Nutrition Humaine, 58 rue Montalembert, 63009 Clermont-Ferrand Cedex 1, France
J. M. Besle
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Station de Recherches sur la Nutrition des Herbivores, Centre de Recherches de Clermont-Ferrand/Theix, 63122 Saint-Genès Champanelle, France
J. Vernet
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, INRA, UR Métabolismes Energétique et Lipidique Centre de Recherches de Clermont-Ferrand/Theix, 63122 Saint-Genès Champanelle, France
Y. Boirie
Affiliation:
Université d'Auvergne, Laboratoire de Nutrition Humaine, 58 rue Montalembert, 63009 Clermont-Ferrand Cedex 1, France
B. Beaufrere
Affiliation:
Université d'Auvergne, Laboratoire de Nutrition Humaine, 58 rue Montalembert, 63009 Clermont-Ferrand Cedex 1, France
R. De Baynast
Affiliation:
Agro Industrie, Recherches et Développements, Route de Bazancourt, 51110 Pomacle, France
M. Vermorel*
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, INRA, UR Métabolismes Energétique et Lipidique Centre de Recherches de Clermont-Ferrand/Theix, 63122 Saint-Genès Champanelle, France
*
*Corresponding author: Dr M. Vermorel, fax +33 4 73 62 46 39, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The energy value of NSP has been expressed as their metabolizable energy (ME) content. The aim of the present study was to determine whether differences in ME and net energy (NE) contents were similar for insoluble and soluble NSP. Nine healthy young men were offered three diets according to a Latin-square design (3 × 3) with three repetitions: diet C (control), diet B (control + 50 g sugarbeet fibre/d) and diet I (control + 50 g commercial inulin/d). After a 16 d adaptation period to NSP isolate, food intake was controlled (duplicate meal method) and faeces and urine were collected for 8 d. A period of 60 h was devoted to measurement of energy expenditure (EE) by whole-body indirect calorimetry. NSP-isolate ingestion induced significant increases in the number of defecations and stool weight resulting from increases in water, DM and microbial mass excretion. After deduction of microbial N, differences in faecal N excretion between diets were not significantly different. Urinary N excretion was slightly decreased by sugarbeet fibre or commercial inulin ingestion but the N balances for the diets were not significantly different. Diet energy, N and lipid apparent digestibilities decreased by only 1–2 %. Commercial inulin was entirely fermented and fermentability of sugarbeet fibre averaged 0.886 (sd 0.117). Sugarbeet fibre and commercial inulin ME values averaged 10.7 (sd 1.2) and 13.0(sd 2.3) kJ/g DM respectively. NSP-isolate ingestion caused significant (sugarbeet) and nonsignificant (inulin) increases in daily EE. The maintenance NE contents of sugarbeet fibre and inulin averaged 5.0 (sd 5.0) and 11.9 (sd 1.3)kJ/g DM respectively. Differences in maintenance NE contents of NSP isolates were much greater than differences in ME values.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1998

References

Armstrong, DG & Blaxter, KL (1957) The heat increment of steam-volatile fatty acids in fasting sheep. British Journal of Nutrition 11, 247272.Google Scholar
Atwater, WO & Bryant, AP (1900) The availability and fuel values of food materials. In 12th Animal Research Reports, Storrs Agricultural Experiment Station, pp. 73110. Storrs, CT: University of Connecticut.Google Scholar
Bastiaens, A, Paquot, M & Deroanne, CI (1989) L'inuline bien plus qu'une fibre (Inulin, much better than a dietary fibre). Alimentation Diététique et Hygiène 31, 617.Google Scholar
Besle, JM, Lassalas, B & Thivend, P (1981) Digestion des glucides cytoplasmiques de la féverole par le veau préruminant (Digestion of field bean cytoplasmic carbohydrates by the preruminant calf). Reproduction Nutrition Development 21, 629649.Google Scholar
Beutler, HO (1984) Inulin. Chapter 1: Poly-, oligo- and disaccharides. In Methods in Enzymatic Analysis, vol. VI, 3rd ed., pp. 4145 [Bergmeyer, HU, editor]. Weinheim: Verlag Chemie.Google Scholar
Blumenkrantz, N & Asboe-Hansen, G (1973) New method for quantitative determination of uronic acids. Analytical Biochemistry 54, 484489.Google Scholar
Breuer, RI, Buto, SK, Christ, ML, Bean, J, Vernia, P, Paoluzi, P, Di Paolo, MC & Caprilli, R (1991) Rectal irrigation with short-chain fatty acids for distal ulcerative colitis. Preliminary report. Digestive Diseases and Sciences 36, 185187.Google Scholar
Brouwer, E (1965) Report of sub-committee on constants and factors. In Energy Metabolism, pp. 441443 [Blaxter, KL, editor]. New York: Academic Press.Google Scholar
Burkitt, D (1987) Dietary fibre. Historical aspect. Scandinavian Journal of Gastroenterology 22, 1014.Google Scholar
Cherbut, C (1989) Fibres alimentaires et substances de charge: aspects physiologiques et nutritionnels (Dietary fibres: physiological and nutritional aspects). Cahiers de Nutrition et de Diététique 24, 439444.Google Scholar
Cherbut, C, Bruley, Des, Varannes, S, Schnee, M, Rival, M, Galmiche, JP & Delort-Laval, J (1994) Involvement of small intestinal motility in blood glucose response to dietary fibre in man. British Journal of Nutrition 71, 675685.Google Scholar
Cummings, JH, Southgate, DAT, Branch, WJ, Houston, H, Jenkins, DJA & James, WPT (1978) Colonic responses to dietary fibre from carrot, cabbage, apple, bran and guar gum. Lancet i, 59.Google Scholar
Dysseler, P & Hoffem, D (1995) Inulin, an alternative dietary fibre. Properties and quantitative analysis. European Journal of Clinical Nutrition 49, S145S152.Google Scholar
Ellis, PR, Rayment, P & Wang, QI (1996) A physico-chemical perspective of plant polysaccharides in relation to glucose absorption, insulin secretion and the entero-insular axis. Proceedings of the Nutrition Society 55, 881898.Google Scholar
Faisant, N, Planchot, V, Kozlowski, F, Pacouret, MP, Colonna, P & Champ, M (1995) Resistant starch determination adapted to products containing high level of resistant starch. Science Aliments 15, 8389.Google Scholar
Folch, J, Lees, M & Sloane, Stanley GH (1957) Simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226, 497509.Google Scholar
Göranzon, H & Forsum, E (1987) Metabolizable energy in humans in two diets containing different sources of dietary fiber. Calculations and analysis. Journal of Nutrition 117, 267273.Google Scholar
Göranzon, H, Forsum, E & Thilen, M (1983) Calculation and determination of metabolizable energy in mixed diets to humans. American Journal of Clinical Nutrition 38, 954963.Google Scholar
Hussein, HS, Merchen, NR & Fahey, GC Jr (1995) Composition of ruminal bacteria harvested from steers as influenced by dietary forage level and fat supplementation. Journal of Animal Science 73, 24692473.CrossRefGoogle ScholarPubMed
Jarrige, R (1961) Analyse des constituants glucidiques des plantes fourragères. I. Fractionnement des constituants de la membrane par les hydrolyses acides (Analysis of forage polysaccharides. I. Fractioning of cell wall polysaccharides by acid hydrolyses). Annales de Biologie Animale, de Biochimie et de Biophysique 1, 163212.Google Scholar
Kelsay, JL, Behall, KM & Prather, ES (1978) Effect of fiber from fruits and vegetables on metabolic responses of human subjects. 1. Bowel transit time, number of defecations, fecal weight, urinary excretions of energy and nitrogen and apparent digestibilities of energy, nitrogen, and fat. American Journal of Clinical Nutrition 31, 11491153.Google Scholar
Kelsay, JL, Goering, HK, Behall, KM & Prather, ES (1981) Effect of fiber from fruits and vegetables on metabolic responses of human subjects: fiber intakes, fecal excretions, and apparent digestibilities. American Journal of Clinical Nutrition 34, 18491852.Google Scholar
Krebs, HA (1960) The cause of the specific dynamic action of foodstuffs. Arzneimiettelforschung 10, 369373.Google ScholarPubMed
Livesey, G (1991) Calculating the energy values of foods: towards new empirical formulae based on diets with varied intakes of unavailable complex carbohydrates. European Journal of Clinical Nutrition 45, 112.Google Scholar
Livesey, G (1992) The energy values of dietary fibre and sugar alcohols for man. Nutrition Research Reviews 5, 6184.Google Scholar
Miles, CW (1992) The metabolizable energy of diets differing in dietary fat and fiber measured in humans. Journal of Nutrition 122, 306311.Google Scholar
Miller, DS & Judd, PA (1984) The metabolisable energy value of foods. Journal of the Science of Food and Agriculture 35, 111116.Google Scholar
Miller, DS & Payne, PR (1959) A ballistic bomb calorimeter. British Journal of Nutrition 13, 501508.Google Scholar
Nilsson, U & Björck, I (1988) Availability of cereal fructans and inulin in the rat intestinal tract. Journal of Nutrition 118, 14821486.Google Scholar
Nilsson, U, Öste, R, Jägerstad, M & Birkhed, D (1988) Cereal fructans: in vitro and in vivo studies on availability in rats and humans. Journal of Nutrition 118, 13251330.Google Scholar
Roberfroid, M (1993) Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science and Nutrition 33, 103148.Google Scholar
Seguenot, D (1990) Effet de l'inuline et des fibres de betterave sur le transit intestinal, la régulation glycémique et lipidique chez le sujet sain (Effects of inulin and sugarbeet fibre on bowel transit time, and regulation of glycaemia and lipidaemia in healthy humans). PhD Thesis, René Descartes University, Paris, France.Google Scholar
Southgate, DAT (1988) Dietary fibre and the diseases of affluence. In A Balanced Diet?, pp. 117139 [Dobbing, J, editor]. London: Springer Verlag.Google Scholar
Southgate, DAT & Durnin, JVGA (1970) Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. British Journal of Nutrition 24, 517535.Google Scholar
Tetens, I, Livesey, G & Eggum, BO (1996) Effects of the type and level of dietary fibre supplements on nitrogen retention and excretion patterns. British Journal of Nutrition 75, 461469.CrossRefGoogle ScholarPubMed
Thivend, P, Mercier, C & Guilbot, A (1972) Determination of starch with glucoamylase. In Methods of Carbohydrate Chemistry, vol. VI, pp. 100105 [RL, Whistler and MC, Wolfrom, editors]. New York, NY: J. Wiley and Sons.Google Scholar
Trowell, H (1972) Ischemic heart disease and dietary fiber. American Journal of Clinical Nutrition 25, 926932.CrossRefGoogle ScholarPubMed
Van Es, AJH, De Groot, L & Vogt, JE (1986) Energy balances of eight volunteers fed on diets supplemented with either lactitol or saccharose. British Journal of Nutrition 56, 545554.CrossRefGoogle ScholarPubMed
Van Es, AJH, Vogt, JE, Niessen, CH, Veth, J, Rodenburg, L, Teeuwse, V & Dhuyvetter, J (1984) Human energy metabolism below, near and above energy equilibrium. British Journal of Nutrition 54, 429442.CrossRefGoogle Scholar
Vermorel, M, Bitar, A, Vernet, J & Ortigues, I (1995) Calorimétrie indirecte. 3 – Contrôle de la validité des mesures des échanges respiratoires des animaux et des humains (Indirect calorimetry. 3 – Control of the respiratory exchange measurements validity in animals and human beings). Cahiers des Techniques INRA 35, 6376.Google Scholar
Vernet, J & Vermorel, M (1993) Base de données pour le calcul des quantités d'éléments nutritifs ingérés dans les études de nutrition humaine (A database for calculating nutrient intakes in human nutrition studies). Cahiers des Techniques INRA 31, 5776.Google Scholar
Wisker, E & Feldheim, W (1990) Metabolizable energy of diets low or high in dietary fiber from fruits and vegetables when consumed by humans. Journal of Nutrition 120, 13311337.Google Scholar
Wisker, E, Maltz, A & Feldheim, W (1988) Metabolizable energy of diets low or high in dietary fiber from cereals when eaten by humans. Journal of Nutrition 118, 945952.Google Scholar
Zinn, RA & Owens, FN (1986) A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66, 157166.Google Scholar