Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T23:58:10.833Z Has data issue: false hasContentIssue false

Multi-frequency bioelectric impedance measurements for predicting body water compartments in patients with non-ascitic liver cirrhosis

Published online by Cambridge University Press:  09 March 2007

A. Borghil
Affiliation:
Department of Internal Medicine, Medicine Clinic III, University of Modena, Via del Pozzo, 41100, Modena, Italy
G. Bedogni
Affiliation:
Department of Biomedical Sciences, Institute of Human Physiology, University of Modena, Via Campi 287, 41100, Modena, Italy
E. Rocchi
Affiliation:
Department of Internal Medicine, Medicine Clinic III, University of Modena, Via del Pozzo, 41100, Modena, Italy
S. Severi
Affiliation:
Department of Biomedical Sciences, Institute of Human Physiology, University of Modena, Via Campi 287, 41100, Modena, Italy
F. Farina
Affiliation:
Department of Internal Medicine, Medicine Clinic III, University of Modena, Via del Pozzo, 41100, Modena, Italy
N. Battistini
Affiliation:
Department of Biomedical Sciences, Institute of Human Physiology, University of Modena, Via Campi 287, 41100, Modena, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We assessed total body water (TBW) and extracellular water (ECW) in thirty-four non-ascitic cirrhotics and twenty healthy controls by 2H2O and Br dilution. In the same subjects, bioelectric impedance (BI) was recorded at multiple frequencies. Body hydration was similar for controls (mean 55·6 (SD 6·7)), less-severe cirrhotics (Child-Pugh classification A; CPA; n 21, mean 56·2 (SD 6·2)) and moderately-severe cirrhotics (Child-Pugh classification B; CPB; n 13, mean 57·2 (SD 5·4)). However, intracellular water standardized per litre TBW was significantly higher in CPB subjects (mean 27·0 (SD 7·5); P<0·01) compared with CPA (mean 21·3 (SD 10·6)) and control subjects (mean 18·0 (SD 9·8)). Published formulas for predicting TBW and ECW from BI at multiple frequencies were applied to the cirrhotics. These formulas gave accurate predictions of TBW and ECW, although standard errors of estimates were higher for CPB subjects (TBW ≤ 2·5 and ECW ≤ 2·11) than those for CPA (TBW ≤ 2·0 and ECW ≤ 1·81) and control (TBW 1·4 and ECW 0·9 1) subjects

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Abacus Concepts Inc. (1992). Statview 4.01, Berkeley, CA: Abacus Concepts Inc.Google Scholar
Battistini, N., Brambilla, P., Virgili, F., Simone, P., Bedogni, G., Morini, P. & Chiumello, G. (1992). The prediction of total body water from body impedance in young obese subjects. International Journal of Obesity 16, 207211.Google ScholarPubMed
Battistini, N., Severi, S., Brambilla, P., Virgili, F., Manzoni, P., Beccaria, L. & Chiumello, G. (1995). Relative expansion of extracellular water in obese vs non obese children. Journal of Applied Physiology 79, 9496.CrossRefGoogle Scholar
Battistini, N., Virgili, F. & Bedogni, G. (1994). A relative expansion of extra-cellular water in elite male athletes compared to recreational sportsmen. Annals of Human Biology 21, 609612.CrossRefGoogle Scholar
Battistini, N., Virgili, F., Bedogni, G., Gambella, G. R. & Bini, A. (1993). In vivo total body water assessment by total body electrical conductivity in rats suffering perturbations of water compartment equilibrium. British Journal of Nutrition 70, 433438.CrossRefGoogle ScholarPubMed
Bedogni, G., Merlini, L., Ballestrazzi, A., Severi, S. & Battistini, N. (1996). Multifrequency bioelectric impedance measurements for predicting body water compartments in Duchenne Muscle Dystrophy. Neuromuscular Disorders 6, 5560.CrossRefGoogle Scholar
Crawford, D. H. G., Halliday, J. W., Cooksley, W. G. E., Murphy, T. L., Golding, S. D., Wallace, J. D., Cuneo, R. C., Lynch, S. V., Strong, R. J. & Powell, L. W. (1993). Distribution of body water in patients with cirrhosis: the effect of liver transplantation. Hepatology 17, 10161021.Google ScholarPubMed
De Lorenzo, A., Deurenberg, P., Andreoli, A., Sasso, F. & Docimo, R. (1994). Multifrequency impedance in the assessment of body water losses during dialysis. Renal Physiology and Biochemistry 17, 326332.Google ScholarPubMed
Deurenberg, P., Schouten, F. J. M., Andreoli, A. & De Lorenzo, A. (1993). Assessment of changes in extra-cellular water and total body water using multi-frequency bio-electrical impedance. In Human Body Composition. In Vivo Methods, Models and Assessment, pp. 129132 [Ellis, K. J. and Eastman, J. D. editors] New York: Plenum Press.CrossRefGoogle Scholar
Frisancho, A. (1990). Anthropometric Standards for the Assessment of Growth and Nutritional Status. Ann Arbor, Mich: The University of Michigan Press.CrossRefGoogle Scholar
Goodman, L. S. & Gillman, A. (1970). The Pharmacological Basis of Therapeutics. New York: Macmillan Press.Google Scholar
Heitmann, B. L. (1994). Impedance: a valid method in assessment of body composition? European Journal of Clinical Nutrition 48, 228240.Google ScholarPubMed
Kondrup, J., Nielsen, K. & Hamberg, O. (1992). Nutritional therapy in patients with liver cirrhosis. British Journal of Nutrition 46, 239246.Google ScholarPubMed
Lohman, T. G., Roche, A. F. & Martorell, R. (editors) (1988). In Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books.Google Scholar
Lukaski, H. C. & Johnson, P. E. (1985). A simple inexpensive method of determining total body water using a tracer dose of deuterium oxide and infrared absorption of biological fluids. American Journal of Clinical Nutrition 41, 363370.CrossRefGoogle ScholarPubMed
Lukaski, H. C., Johnson, P. E., Bolonchuck, W. W. & Lykken, G. I. (1985). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. American Journal of Clinical Nutrition 41, 810817.CrossRefGoogle ScholarPubMed
McCullough, A. J., Mullen, K. D. & Kalhan, S. C. (1991). Measurement of total body and extracellular water in cirrhotic patients with and without ascites. Hepatology 14, 11021111.CrossRefGoogle ScholarPubMed
Maschio, G., D'Angelo, A., Sirigu, F., Ossi, E., Polin, R., Fagiolo, U. & Naccarato, R. (1971). Muscle biopsies studies in liver cirrhosis. Scandinavian Journal of Gastroenterology 6, 363367.CrossRefGoogle ScholarPubMed
Nielsen, K., Kondrup, J., Martinsen, L., Stilling, B. & Wikman, B. (1993). Nutritional assessment and adequacy of dietary intake in hospitalized patients with alcoholic liver cirrhosis. British Journal of Nutrition 69, 665679.CrossRefGoogle ScholarPubMed
Ossi, E., Mioni, G., D'Angelo, A., Lupo, A., Valvo, E. & Maschio, G. (1974). Aspetti del metabolismo idroelettrolitico indagati con l'agobiopsia muscolare. Reperti nello scompenso cardiaco, nella cirrosi epatica, nel diabete mellito, nell' insufficienza renale cronica (Aspects of water and electrolyte metabolism determined by muscle bioptic studies. Findings in heart failure, liver cirrhosis, diabetes mellitus and chronic renal insufficiency). Giornale di Clinica Medica 55, 131134.Google Scholar
Prijatmoko, D., Strauss, B. J. G., Lambert, J. R., Sievert, W., Stroud, D. B., Wahlqvist, M. L., Katz, B., Colman, J., Jones, P. & Korman, M. G. (1994). Early detection of protein depletion in alcoholic cirrhosis: role of body composition analysis. Gastroenterology 105, 18391845.CrossRefGoogle Scholar
Rocchi, E., Borghi, A., Paolillo, F., Pradelli, M. & Casalgrandi, G. (1991). Carotenoids and liposoluble vitamins in liver cirrhosis. Journal of Laboratory and Clinical Medicine 118, 176185.Google ScholarPubMed
Rose, B. D. (1994 a). Potassium homeostasis. In Clinical Physiology of Aci-base and Electrolyte Disorders, pp. 346371. New York: McGraw-Hill.Google Scholar
Rose, B. D. (1994 b). Edematous states. In Clinical Physiology of Acid-buse and Electrolyte Disorders, pp. 447499. New York: McGraw-Hill.Google Scholar
Schober, O., Mariß, P., Schmidt, F. W. & Hundeshagen, H. (1979). Total body water, extracellular water, plasma volume and total body potassium in cirrhosis of the liver. Kliniks Wochenschrift 57, 757761.CrossRefGoogle ScholarPubMed
Segal, K. R., Burastero, S., Chun, A., Coronel, P., Pierson, R. N. & Wang, J. (1991). Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurements. American Journal of Clinical Nutrition 54, 2629.CrossRefGoogle Scholar
van Marken Lichtenbelt, W., Westerterp, K., Wouters, L. & Luijendijk, S. (1994). Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. American Journal of Clinical Nutrition 60, 159166.CrossRefGoogle ScholarPubMed
Waki, M., Kral, J., Mazariegos, M., Wang, J., Pierson, R. N. & Heymsfield, S. B. (1991). Relative expansion of extracellular fluid in obese vs non-obese women. American Journal of Physiology 261, E199203.Google Scholar
Wong, W. W., Sheng, H. P., Morkenberg, J. C., Kosanovich, J. L., Clarke, L. L. & Klein, P. D. (1989). Measurement of extracellular water volume by bromide ion chromatography. American Journal of Clinical Nutrition 50, 12901295.CrossRefGoogle ScholarPubMed
Zillikens, M. C., van der Berg, J. W. O., Wilson, J. H. P., Rietveld, T. & Swart, G. R. (1992 a). The validity of bioelectrical impedance analysis in estimating total body water in patients with cirrhosis. Journal of Hepatology 16, 5965.CrossRefGoogle ScholarPubMed
Zillikens, M. C., van der Berg, J. W. O., Wilson, J. H. P. & Swart, G. R. (1992 b). Whole-body and segmental bioelectric-impedance analysis in patients with cirrhosis of the liver: changes after treatment of ascites. American Journal of Clinical Nutrition 55, 621625.CrossRefGoogle Scholar