Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T08:51:57.006Z Has data issue: false hasContentIssue false

Monitoring the fate of dietary proteins in rumen fluid using gel electrophoresis

Published online by Cambridge University Press:  09 March 2007

D. Spencer
Affiliation:
Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, GPO Box 1600, Canberra, Australia
T. J. V. Higgins
Affiliation:
Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, GPO Box 1600, Canberra, Australia
M. Freer
Affiliation:
Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, GPO Box 1600, Canberra, Australia
H. Dove
Affiliation:
Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, GPO Box 1600, Canberra, Australia
J. B. Coombe
Affiliation:
Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, GPO Box 1600, Canberra, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. When fractionated by sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE), strained rumen fluid from sheep fed on pelleted lucerne (Medicago sativa) hay showed no major protein components that stain with Coomassie Blue. This feature made it possible to monitor the fate of individual polypeptides within a protein mixture incubated in rumen fluid in vitro.

2. Extracts from a number of seed meals (sunflower (Helianthus annuus), lupin (Lupinus angustifolius), rape (Brassica napus) and pea (Pisum sativum L.)), as well as casein and bovine serum albumin, were examined in this system. The protein components of each seed type showed a wide range of resistances to degradation. One protein in pea seeds (pea albumin 1), which is particularly rich in cysteine, was almost as resistant to rumen degradation as bovine serum albumin.

3. Analysis of synthetic-fibre-bag experiments by SDS-PAGE showed that the rate of loss of total protein from solid meal residues does not provide an index of the resistance of individual protein components of the meal to rumen degradation. While there was no qualitative change in the protein profile of residual pea-seed meal inside a synthetic-fibre bag, there was considerable variation in the rate at which individual, solubilized protein components were degraded in the surrounding rumen fluid.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1988

References

Annison, E. F. (1956). Biochemical Journal 64, 705714.CrossRefGoogle Scholar
Coombe, J. B. (1985). Australian Journal of Agricultural Research 36, 717728.CrossRefGoogle Scholar
Crooker, B. A., Sniffen, C. J., Hoover, W. H. & Johnson, L. L. (1978). Journal of Dairy Science 61, 437447.Google Scholar
Dougherty, R. W. (1955). Cornell Veterinarian 45, 331357.Google Scholar
Freer, M. & Dove, H. (1984). Animal Feed Science and Technology 11, 87101.CrossRefGoogle Scholar
Ganev, G., Ørskov, E. R. & Smart, R. (1979). Journal of Agricultural Science, Cambridge 93, 651656.CrossRefGoogle Scholar
Higgins, T. J. V., Chandler, P. M., Spencer, D., Beach, L. R., Blagrove, R. J., Kortt, A. A. & Inglis, A. S. (1986). Journal of Biological Chemistry 261, 1112411130.CrossRefGoogle Scholar
Laemmli, U. K. & Favre, M. (1973). Journal of Molecular Biology 80, 575599.Google Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Australian Journal of Agricultural Research 23, 321330.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
McDougall, E. I. (1948). Biochemical Journal 43, 99109.CrossRefGoogle Scholar
Mahadevan, S., Erfle, J. D. & Sauer, F. D. (1980). Journal of Animal Science 50, 723728.CrossRefGoogle Scholar
Mangan, J. L. (1972). British Journal of Nutrition 27, 261283.CrossRefGoogle Scholar
Mathers, J. C. & Miller, E. R. (1981). British Journal of Nutrition 45, 587604.CrossRefGoogle Scholar
Nugent, J. H. A., Jones, W. T., Jordan, D. J. & Mangan, J. L. (1983). British Journal of Nutrition 50, 357368.CrossRefGoogle Scholar
Nugent, J. H. A. & Mangan, J. L. (1981). British Journal of Nutrition 46, 3958.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1963). Australian Journal of Biological Science 16, 218230.CrossRefGoogle Scholar
Schroeder, H. E. (1982). Journal of the Science of Food and Agriculture 33, 623633.CrossRefGoogle Scholar
Schroeder, H. E. (1984). Journal of the Science of Food and Agriculture 35, 191198.CrossRefGoogle Scholar
Smith, R. H. (1975). In Digestion and Metabolism in the Ruminant, pp. 399415. [McDonald, I.W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Spencer, D., Higgins, T. J. V., Button, S. C. & Davey, R. A. (1980). Plant Physiology 66, 510515.CrossRefGoogle Scholar
Stern, M. D. & Satter, L. D. (1984). Journal of Animal Science 58, 714724.CrossRefGoogle Scholar
White, M. E. P., Thompson, F. B. & Brice, N. (1948). Analyst 73, 146148.CrossRefGoogle Scholar
Wohlt, J. E., Sniffen, C. J. & Hoover, W. H. (1973). Journal of Dairy Science 56, 10521057.CrossRefGoogle Scholar