Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T09:07:57.593Z Has data issue: false hasContentIssue false

Modulation of cholestan-3β,5α,6β-triol toxicity by butylated hydroxytoluene, α-tocopherol and β-carotene in newborn rat kidney cells in vitro

Published online by Cambridge University Press:  09 March 2007

Alison M. Wilson
Affiliation:
Department of Nutrition, National Food Biotechnology Centre, University College, Cork, Republic of Ireland
Ruth M. Sisk
Affiliation:
Department of Nutrition, National Food Biotechnology Centre, University College, Cork, Republic of Ireland
Nora M. O'Brien
Affiliation:
Department of Nutrition, National Food Biotechnology Centre, University College, Cork, Republic of Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cholesterol oxidation products (COP) have been reported to influence vital cellular processes such as cell growth, cell proliferation, membrane function and de novo sterol biosynthesis. The objectives of the present study were: (1) to develop an in vitro model using newborn rat kidney (NRK) cells to investigate the actions of COP; (2) to investigate the effect of COP on cell viability, endogenous antioxidant enzymes activities, i.e. superoxide dismutase (EC 1.15.1.1; SOD) and catalase (EC 1.11.1.6; CAT), and the extent of lipid peroxidation in this model; (3) to determine whether the addition of 100–1000 nm-α-tocopherol, β-carotene or butylated hydroxytoluene (BHT) could protect against COP-induced cytotoxicity. NRK cells were cultured in the presence of various concentrations (5–50 μM) of cholesterol or cholestan-3β,5α,6β-triol (cholestantriol) for a period of 24 h. Cholesterol over the range 5–50 μM did not induce cytotoxicity as indicated by the neutral-red-uptake assay or the lactate dehydrogenase (EC 1.1.1.27)-release assay. However, cell viability was compromised by the addition of > 10 μM-cholestantriol (P < 0.05). The addition of β-carotene (100–1000 nM) did not increase cell viability significantly in cholestantriol-supplemented cells. However, the addition of α-tocopherol (1000 nM) and BHT (1000 nM) significantly increased percentage cell viability above that of the cholestantriol-supplemented cells but not back to control levels. SOD and CAT activities in NRK cells significantly decreased (P < 0.05) following incubation with cholestantriol. The addition of > 750 nM-α-tocopherol, β-carotene or BHT returned SOD and CAT activities to that of the control. Lipid peroxidation was significantly induced (P < 0.05) in the presence of cholestantriol. Supplementation of the cells with α-tocopherol (250, 500 or 1000 nM) or BHT (750 or 1000 nM) resulted in a reduction in the extent of lipid peroxidation (P < 0.05). The addition of β-carotene over the concentration range of 250–1000 nM did not reduce lipid peroxidation significantly compared with cells exposed to cholestantriol alone. These findings suggest that addition of exogenous antioxidants may be beneficial in the prevention of COP-induced toxicity in vitro.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Baranowski, A., Adams, C. W. M., Bayliss High, O. B. & Bowyer, D. B. (1982) Connective tissue responses to oxysterols. Atherosclerosis 35, 110.Google Scholar
Baudhuin, P., Beaufay, H., Rahman-Li, Y., Sellinger, O. Z., Wattiaux, R., Jacques, P. & de Duve, C. (1964). Tissue fractionation studies. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, d-aminoacid oxidase and catalase in rat liver tissue. Biochemical Journal 92, 179184.CrossRefGoogle Scholar
Beuge, J. A. & Aust, S. D. (1978). Microsomal lipid peroxidation. In Methods in Enzymology, Vol. 52, pp. 302310 [Fleischer, S. and Packer, L., editors]. New York: Academic Press.Google Scholar
Bieri, J. G., Tolliver, T. J. & Catignani, G. L. (1979) Simultaneous determination of α-tocopherol and retinol in plasma or red cells by high pressure liquid chromatography. American Journal of Clinical Nutrition 32,21432149.CrossRefGoogle ScholarPubMed
Bjorkhem, I., Henriksson-Freyschuss, A., Breuer, O., Diczfalusy, U., Berglund, L. & Henriksson, P. (1991) The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arteriosclerosis and Thrombosis 11, 1522.CrossRefGoogle ScholarPubMed
Boissonneault, G. A., Hennig, B. & Ouyang, C. M. (1991) Oxysterols, cholesterol biosynthesis, vascular endothelial cell monolayer barrier function. Proceedings of the Society for Experimental Biology and Medicine 196, 338343.CrossRefGoogle ScholarPubMed
Bonorden, W. R. & Pariza, M. W. (1994). Antioxidant nutrients and protection from free radicals. In Nutritional Toxicology, pp. 1948 [Kotsonis, F.N., Mackey, M. and Hjelle, J., editors]. New York: Raven Press Ltd.Google Scholar
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein, utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Bradley, D. G. & Min, D. B. (1992) Singlet oxygen oxidation in food. Critical Reviews in Food Science and Nutrition 31, 211236.CrossRefGoogle Scholar
Burton, G. W. & Ingold, K. U. (1984) Beta-carotene: an unusual type of lipid antioxidant. Science 224, 569576.CrossRefGoogle ScholarPubMed
Burton, G. W., Joyce, A. & Ingold, K. U. (1983) Is vitamin E the only lipid soluble chain breaking antioxidant in human blood plasma and erythrocyte membranes? Archives of Biochemistry and Biophysics 221, 281290.Google Scholar
Carew, T. E., Schwenke, D. C. & Steinberg, D. (1987). Antiatherogenic effect of probucol unrelated to its hypocholestemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proceedings of the National Academy of Sciences USA 84, 77257729.CrossRefGoogle Scholar
Chan, J. T. & Chan, J. C. (1980) Toxic effects of cholesterol derived photoproducts on Chinese hamster embryo cells. Photochemistry and Photobiophysics 1, 113117.Google Scholar
Cook, R. P. & McDougall, J. D. B. (1967) Experimental atherosclerosis in rabbits after feeding cholestanetriol. British Journal of Experimental Pathology 49, 265271.Google Scholar
De Ritter, E. & Purcell, A. E. (1981). Carotenoid analytical methods. In Carotenoids as Colorants and Vitamin A Precursors, pp. 883923 [Bauernfeind, J. C. editor]. London: Academic Press.Google Scholar
Foote, C. S. & Denny, R. W. (1968) Chemistry of singlet oxygen: VII. Quenching by β-carotene. Journal of the American Chemical Society 90, 62336235.CrossRefGoogle Scholar
Guardiola, F., Codony, R., Addis, P. B., Rafecas, M. & Boatella, J. (1996) Biological effects of oxysterols: current status. Food Chemistry and Toxicology 34, 193211.CrossRefGoogle ScholarPubMed
Gumulka, J., Pyrek, J. S. & Smith, L. L. (1982) Interception of oxygen species in aqueous media by cholesterol: formation of cholesterol epoxides and secosterols. Lipids 17, 197203.CrossRefGoogle Scholar
Hennig, B. & Boissonneault, G. A. (1987) Cholestan-3β,5α,6β-triol decreases barrier function of cultured endothelial cell monolayers. Atherosclerosis 68, 255261.CrossRefGoogle Scholar
Hodis, H. N., Chauhan, A., Hashimoto, S., Crawford, D. W. & Sevanian, A. (1992) Probucol reduces plasma and aortic wall oxysterol levels in cholesterol fed rabbits independently of its plasma cholesterol lowering effect. Atherosclerosis 96, 125134.CrossRefGoogle ScholarPubMed
Homberg, E. & Bielefeld, B. (1985) Freie und gebundene Sterine in rohen und raffinierten Palmoelen. III. Verhalten der sterinhaltigen Lipoproteine bei der Raffination. (Free and bound sterols in raw and refined palm oils. III. Behaviour of sterol-containing lipoproteins during refining.) Fette Seifen Anstriche 87, 333336.CrossRefGoogle Scholar
Hunter, S. M., Chrzanowski, C., Barnett, C. R., Brand, H. N. & Sawell, J. K. (1987). A comparison of in vitro cytotoxicity assays and their application to water samples. Alternative Laboratory Techniques to Animals 15, 2029.Google Scholar
Jacobson, M. S. (1987) Cholesterol oxides in Indian ghee: possible cause of unexplained high risk of atherosclerosis in Indian immigrant populations. Lancet ii, 656658.CrossRefGoogle Scholar
Kandutsch, A. A. & Chen, H. W. (1977) Consequences of blocked sterol synthesis in cultured cells, DNA synthesis and membrane composition. Journal of Biological Chemistry 252, 409415.CrossRefGoogle ScholarPubMed
Kelsey, M. I. & Pienta, R. J. (1981) Transformation of hamster embryo cells by neutral sterols and bile acids. Toxicological Letters 9, 177182.CrossRefGoogle ScholarPubMed
Kono, Y. & Fridovich, I. (1982) Superoxide radical inhibits catalase. Journal of Biological Chemistry 257, 57515754.CrossRefGoogle ScholarPubMed
Kornburst, D. J. & Mavis, R. D. (1980) Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation: correlation with vitamin E content. Lipids 15, 315322.CrossRefGoogle Scholar
Kucuk, O., Lis, L. J., Dey, T., Mata, R., Westerman, M. P., Yachnin, S., Szostek, R., Tracy, D., Kauffman, J. W., Gage, D. A. & Sweeley, C. C. (1992) The effects of cholesterol oxidation products in sickle and normal red blood cell membranes. Biochimica et Biophysica Acta 1103, 296302.CrossRefGoogle ScholarPubMed
Kumar, N. & Singhal, O. P. (1991) Cholesterol oxides and atherosclerosis: a review. Journal of the Science of Food and Agriculture 55, 497510.CrossRefGoogle Scholar
Lawlor, S. M. & O'Brien, N. M. (1994). Development of an in vitro cell culture model to investigate the induction and quantification of oxidative stress and its inhibition by α-tocopherol. Toxicology In Vitro 8, 6773.CrossRefGoogle Scholar
Lawlor, S. M. & O'Brien, N. M. (1995) Astaxanthine: antioxidant effects in chicken embryo fibroblasts. Nutrition Research 15, 16951704.CrossRefGoogle Scholar
Lawlor, S. M. & O'Brien, N. M. (1997) Antioxidant activity of β-carotene at low oxygen partial pressure in chicken embryo fibroblasts. British Journal of Nutrition 77, 133140.CrossRefGoogle Scholar
McCay, P. B. (1985) Vitamin E: interactions with free radicals and ascorbate. Annual Reviews in Nutrition 5, 323340.CrossRefGoogle ScholarPubMed
McCord, J. M. & Fridovich, I. (1969) Superoxide dismutase. An enzyme function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244, 60496055.CrossRefGoogle ScholarPubMed
Machlin, L. J. & Bendich, A. (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB Journal 1, 441445.CrossRefGoogle ScholarPubMed
Maeda, K., Naganuma, M. & Fukuda, M. (1991) Effects of chronic exposure to ultraviolet-A including 2% ultraviolet-B on free radical reduction systems in hairless mice. Photochemistry and Photobiology 54, 737740.CrossRefGoogle ScholarPubMed
Mantha, S. V., Prasad, M., Kalra, J. & Prasad, K. (1993) Antioxidant enzymes in hypercholesterolemia and effects of Vitamin E in rabbits. Atherosclerosis 101, 135144.CrossRefGoogle ScholarPubMed
Matthias, D., Becker, C. H., Godicke, W., Schmidt, R. & Ponsold, K. (1987) Action of cholestane -3β, 5α, 6β-triol on rats with particular reference to the aorta. Atherosclerosis 63, 115124.CrossRefGoogle Scholar
Morin, R. J., Hu, B., Peng, S. K. & Sevanian, A. (1992). Cholesterol oxidation and cancer. In Biological Effects of Cholesterol Oxides, pp. 191202 [Peng, S.K. and Morin, R. J., editors]. London: CRC Press.Google Scholar
Morliere, P., Moysan, A., Santus, R., Huppe, G., Maziere, J. C. & Dubertret, L. (1991) UVA-induced lipid peroxidation in cultured human fibroblasts. Biochimica et Biophysica Acta 1084, 261268.CrossRefGoogle ScholarPubMed
Packer, L. (1991) Protective role of vitamin E in biological systems. American Journal of Clinical Nutrition 53, 1050S1055S.CrossRefGoogle ScholarPubMed
Parish, E. J., Nanduri, B. B., Kohl, H. H. & Taylor, F. R. (1986) Oxysterols: chemical synthesis, biosynthesis and biological activities. Lipids 21, 2730.CrossRefGoogle ScholarPubMed
Park, S. W. & Addis, P. B. (1987) Cholesterol oxidation products in some muscle foods. Journal of Food Science 52, 15001503.CrossRefGoogle Scholar
Pelle, E., Maes, D., Padulo, A., Kim, E. K. & Smith, W. P. (1989) In vitro model to assess alpha-tocopherol efficacy. Annals of New York Academy of Sciences 570, 491494.CrossRefGoogle Scholar
Peng, S. K., Hu, B. & Morin, R. J. (1991) Angiotoxicity and atherogenicity of cholesterol oxides. Journal of Clinical Laboratory Analysis 5, 144152.CrossRefGoogle ScholarPubMed
Peng, S. K., Sevanian, A. & Morin, R. J. (1992). Cytotoxicity of cholesterol oxides. In Biological Effects of Cholesterol Oxides, pp. 147166 [Peng, S.K. and Morin, R. J., editors]. London: CRC Press.Google Scholar
Peng, S. K., Taylor, C. B., Hill, J. & Safarik, J. (1985) Cholesterol oxidation derivatives and arterial endothelial damage. Atherosclerosis 54, 121133.CrossRefGoogle ScholarPubMed
Peng, S. K., Tham, P., Taylor, C. B. & Mikkelson, B. (1979) Cytotoxicity of oxidation derivatives of cholesterol on cultured aortic smooth muscle cells and their effects on cholesterol biosynthesis. American Journal of Clinical Nutrition 32, 10331042.CrossRefGoogle ScholarPubMed
Pie, J. E., Spahis, K. & Seillan, C. (1991) Cholesterol oxidation in meat products during cooking and frozen storage. Journal of Agricultural and Food Chemistry 39, 250254.CrossRefGoogle Scholar
Prasad, C. R. & Subramanian, R. (1992) Qualitative and comparative studies of cholesterol oxides in commercial and home-made Indian ghees. Food Chemistry 45, 7173.CrossRefGoogle Scholar
Princen, H. M. G., van Duyvenvoorde, W., Buytenhek, R., van der Laarse, A., Poppel, G., Leuven, J. A. G. & van Hinsbergh, V. W. M. (1995) Supplementation with low doses of Vitamin E protects LDL from lipid peroxidation in men and women. Arteriosclerosis, Thrombosis and Vascular Biology 15, 325333.CrossRefGoogle ScholarPubMed
Princen, H. M. G., van Poppel, G., Vogelezang, C., Buytenhek, R. & Kok, F. J. (1992). Supplementation with vitamin E but not β-carotene in vivo protects low density lipoprotein from lipid peroxidation in vitro: effect of cigarette smoking. Arteriosclerosis and Thrombosis 12, 554562.CrossRefGoogle Scholar
Punnonen, K., Puntala, A., Jansen, C. T. & Ahotupa, M. (1991). UVB irradiation induces lipid peroxidation and reduced antioxidant enzyme activities in human keratinocytes in vitro. Acta Dermatovenerologica 71, 239273.Google ScholarPubMed
Reaven, P. D., Ferguson, E., Navab, M. & Powell, F. L. (1994) Susceptibility of human LDL to oxidative modification: effects of variations in β-carotene concentration and oxygen tension. Arteriosclerosis and Thrombosis 14, 11621169.CrossRefGoogle ScholarPubMed
Riemersma, R. A., Oliver, M., Elton, R. A., Alfthan, G., Vartiainen, E., Salo, M., Rubba, P., Mancini, M., Georgi, H., Vuilleumier, J. P. & Gey, K. F. (1990) Plasma antioxidants and coronary heart disease: vitamins C and E, and selenium. European Journal of Clinical Nutrition 44, 143150.Google Scholar
Sarantinos, J., O'Dea, K. & Sinclair, A. J. (1993) Cholesterol oxides in Australian foods: identification and quantification. Food Australia 45, 485490.Google Scholar
Schroepfer, G. J. (1982) Sterol biosynthesis. Annual Review of Biochemistry 51, 555585.CrossRefGoogle Scholar
Sevanian, A. & Peterson, A. R. (1984) Cholesterol epoxide is a direct-acting mutagen. Proceedings of the National Academy of Sciences USA 81, 41984202.CrossRefGoogle ScholarPubMed
Sevanian, A. & Peterson, A. R. (1986) The cytotoxic and mutagenic properties of cholesterol oxidation products. Food Chemistry and Toxicology 24, 11031110.CrossRefGoogle ScholarPubMed
Shahidi, F. & Wanasundara, P. K. J. P. D. (1992) Phenolic antioxidants. Critical Reviews in Food Science and Nutrition 32, 67103.CrossRefGoogle ScholarPubMed
Shaish, A., Daugherty, A., O'Sullivan, F., Schonfeld, G. & Heinecke, J. W. (1995) Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. Journal of Clinical Investigation 96, 20752082.CrossRefGoogle ScholarPubMed
Smith, L. L. (1981). The autoxidation of cholesterol. In Autoxidation in Food and Biological Systems, pp. 119131 [Simic, M.G. and Karel, M., editors]. New York: Plenum Press.Google Scholar
Smith, L. L. & Johnson, B. H. (1989) Biological activities of oxysterols. Free Radicals in Biology and Medicine 7,285332.CrossRefGoogle ScholarPubMed
Taylor, C. B., Peng, S. K., Safarik, J., Kapuscinska, B., Bochenek, W. & Hill, J. (1983). Experimental atherosclerosis in squirrel monkeys by feeding with cholestane-3β,5α,β-triol. Federation Proceedings 42, 789 Abstr.Google Scholar
Vassault, A. (1983). Lactate dehydrogenase. In Methods of Enzymatic Analysis, Vol. 3, pp. 118126 [H. U. Bergmeyer, editor]. Weinheim, Germany: Verlag Chemie.Google Scholar
Viana, M., Barbas, C., Bonet, B., Bonet, M. V., Castro, M., Fraile, V. & Herrera, E. (1996) In vitro effects of a flavonoid-rich extract on LDL oxidation. Atherosclerosis 123, 8391.CrossRefGoogle ScholarPubMed
Zhou, Q., Wasowicz, E. & Kummerow, F. A. (1995) Failure of vitamin E to protect cultured human arterial smooth muscle cells against oxysterol-induced cytotoxicity. Journal of the American College of Nutrition 14, 169175.CrossRefGoogle ScholarPubMed