Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T04:43:31.420Z Has data issue: false hasContentIssue false

Modifications in plasma cholesterol and apolipoproteins of hypercholesterolaemic rats induced by ethanol-soluble factors of Vicia faba

Published online by Cambridge University Press:  24 July 2007

Elena Mengheri
Affiliation:
Istituto NazionaIe della Nutrizione, Via Ardeatina, 546-OOI 79 Rome, Italy
M. Laura Scarino
Affiliation:
Istituto NazionaIe della Nutrizione, Via Ardeatina, 546-OOI 79 Rome, Italy
Francesco Vignolini
Affiliation:
Istituto NazionaIe della Nutrizione, Via Ardeatina, 546-OOI 79 Rome, Italy
M. Antonietta Spadoni
Affiliation:
Istituto NazionaIe della Nutrizione, Via Ardeatina, 546-OOI 79 Rome, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. High-fat-high-cholesterol diets containing casein or a Vicia faba bean (faba bean) protein concentrate as the protein source were given to rats for 5 weeks. When the faba bean protein concentrate or its ethanol extract was present in the diet, a marked decrease was found in the level of circulating cholesterol associated with the lower-density lipoproteins (very-low-, intermediate- and low-density lipoproteins) compared with the level found on the diets containing casein or the faba bean protein concentrate deprived of ethanol-soluble factors.

2. Alterations in apoprotein pattern were detected after the different dietary treatments. In particular, apoA-I appeared in an unusual form with electrophoretic mobility faster than normal in all lipoprotein fractions after feeding the diets that did not lower plasma cholesterol. When the diets contained the faba bean protein concentrate or its ethanol extract, the apoA-I disappeared from the lower-density lipoproteins but its normal form and the unusual one were apparent in the high-density lipoproteins.

3. A moderate increase in faecal excretion of acidic steroids was found after feeding the diets containing the ethanol-soluble factors, irrespective of the protein source.

4. The results are discussed in relation to the presence of saponin and polyunsaturated lecithin in the ethanol extract of the faba bean protein concentrate.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Assmann, G. (1976). In Phosphatidylcholine, pp. 3447 [Peeters, H, editor]. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Carnovale, E., Cappelloni, M., Zaza, G. & Ibba, P. (1985). Qualitas Plantarum — Plant Foods for Human Consumption (In the Press).Google Scholar
Carrol, K. K. (1982). Federation Proceedings 41, 27922796.Google Scholar
Carrol, K. K., Huff, M. W., & Roberts, D. C. K. (1979). In Soy Protein and Human Nutrition, pp. 261280 [Wilcke, H. L., Hopkins, D. T. and Waggle, D. H., editors]. New York: Academic Press.Google Scholar
Clark, S. B., Clark, V. E. & Small, D. M. (1981). American Journal of Physiology 241, G422–G430.Google Scholar
Conover, W. J. (1971). In Practical Non-Parametric Statistics, pp. 223237. New York: J. Wiley & Sons.Google Scholar
Edelstein, C., Gordon, J. I., Toscas, K., Sims, H. F., Strauss, A. W. & Scanu, A. M. (1983). Journal of Biological Chemistry 258, 1143011433.Google Scholar
Fenwick, D. E. & Oakenfull, D. (1981). Journal Of Agriculture and Food Chemistry 32, 273278.Google Scholar
Fielding, C. J., Shore, V. G. & Fielding, P. E. (1972). Biochimica et Biophysica Acta 270, 513518.CrossRefGoogle Scholar
Ghiselli, G., Schafer, E. J., Light, J. A. & Brewer, B. (1983). Journal of Lipid Research 24, 731736.CrossRefGoogle Scholar
Glickman, R. M. & Green, P. H. R. (1977). Proceedings of National Academy of Sciences, USA 74, 25692573.Google Scholar
Glomset, J. A. & Norum, K. R. (1973). Advances in Lipid Research 11, 165.Google Scholar
Green, P. H. R., Tall, A. R. & Glickman, R. M. (1978). Journal of Clinical Investigation 61, 528534.CrossRefGoogle Scholar
Havel, R. J., Eder, H. A. & Bragdon, J. H. (1955). Journal of Clinical Investigation 34, 13451353.CrossRefGoogle Scholar
Hegsted, D. M. & Chang, X. (1965). Journal of Nutrition 85, 159168.Google Scholar
Jaya, T. V., Mengheri, E., Scarino, M. L., Vignolini, F. & Spadoni, M. A. (1981). Nutrition Reports International 23, 5569.Google Scholar
Jones, J. H. & Foster, J. (1942). Journal of Nutrition 24, 345352.Google Scholar
Kritchevsky, D. (1979). Journal American Oil Chemists' Society 56, 135140.Google Scholar
Kuttner, T. & Lichtenstein, L. (1930). Journal of Biological Chemistry 83, 671676.CrossRefGoogle Scholar
Laemmly, U. K. (1970). Nature 227, 680685.Google Scholar
Lekim, D. (1976). In Phosphatidylcholine, pp. 4865 [Peeters, H., editors]. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
Mengheri, E., Scarino, M. L., Vignolini, F. & Spadoni, M. A. (1982). Nutrition Reports International 26, 751758.Google Scholar
Metcalpe, L. D. & Schmitz, A. A. (1961). Analytical Chemistry 33, 363364.Google Scholar
Moore, S. & Stein, W. H. (1963). In Methods in Enzymology, vol. 6, pp. 819831 [Colowich, S. P. and Kaylan, N. O., editors]. New York and London: Academic Press.Google Scholar
Mosbach:, E. H., Kalinsky, H. J., Halpern, E. & Kendall, F. E. (1954). Archives of Biochemistry and Biophysics 51,402410.Google Scholar
Nicoll, A., Miller, N. E. & Lewis, B. (1979). Advances in Lipid Research 17, 53106.Google Scholar
Oakenfull, D. G., Fenwick, D. E. & Hood, R. L. (1979). British Journal of Nutrition 40, 299309.Google Scholar
O'Mullane, J. E. & Hawthorne, J. (1982). Atherosclerosis 45, 8190.Google Scholar
Patsch, J. R., Aune, K. C., Gotto, A. M. Jr. & Morriset, J. D. (1977). Journal of Biological Chemistry 252, 21132120.Google Scholar
Rosseneu, M., Declercq, B., Vandamme, D., Vercaemst, R., Soetewey, F., Peters, H. & Blaton, V. (1979). Atherosclerosis 32, 141153.Google Scholar
Rudel, L. L. & Morris, M. D. (1973). Journal of Lipid Research 14, 364366.Google Scholar
Sautier, C., Doucet, C., Flament, C. & Lemonnier, D. (1979). Atherosclerosis 34, 233241.CrossRefGoogle Scholar
Schaefer, E. J., Wetzel, M. G., Bengtsson, G., Scow, R. O., Brewer, H. B. Jr. & Olivecrona, T. (1982). Journal of Lipid Research 23, 12591273.Google Scholar
Schram, E., Moore, S. & Bigwood, E. J. (1954). Biochemical Journal 57, 3337.Google Scholar
Scow, R. O., Stein, Y. & Stein, O. (1967). Journal of Biological Chemistry 242, 49194924.Google Scholar
Seidel, D., Alaupovic, P. & Furman, R. H. (1969). Journal of Clinical Investigation 48, 12111223.Google Scholar
Sugano, M. (1983). In Current Topics in Nutrition and Disease. Animal and Vegetable Proteins in Lipid Metabolism and Atherosclerosis, vol. 8, pp. 5184 [Gibney, M. J. and Kritchevsky, D., editors]. New York: Alan R. Liss, Inc.Google Scholar
Tall, A. R. & Small, D. M. (1979). Advances in Lipid Research 17, 151.Google Scholar
Topping, D. L., Storer, G. B., Calvert, G. D., Illman, R. J., Oakenfull, D. G. & Weller, R. A. (1980). American Journal of Clinical Nutrition 33, 783786.Google Scholar
Vahouny, G. V. (1982). Federation Proceedings 41, 28012806.Google Scholar
Wong, E. K., Nicolosi, R. J., Low, P. A., Herd, J. A. & Hayes, K. C. (1980). Lipids 15, 428433.Google Scholar
Wu, A. L. & Windmueller, H. G. (1978). Journal of Biological Chemistry 253, 25252528.CrossRefGoogle Scholar
Wu, A. L. & Windmueller, H. G. (1979). Journal of Biological Chemistry 254, 73167322.Google Scholar