Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T08:39:46.987Z Has data issue: false hasContentIssue false

Mineral excretion of rats fed on diets containing faba beans (Vicia faba L.) or faba bean fractions

Published online by Cambridge University Press:  09 March 2007

Luis A. Rubio
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
George Grant
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Susan Bardocz
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Peter Dewey
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
A. Pusztai
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects on faecal mineral excretion of two commercial varieties (local cultivar and Troy cultivar) of raw faba beans (Vicia faba L., minor) meal (VFM) and its fractions have been studied in growing rats. Diets contained local-VFM (dark seed coat) and Troy-VFM (light seed coat) at 474–500 g/kg diet, hull (VFH) from both varieties at 65 g/kg diet, and the insoluble cotyledon residue (VFCR) obtained from the Troy variety at 237 g/kg diet. Rats were pair-fed on diets which had been supplemented with amino acids to target requirements and contained similar amounts of zinc, manganese, iron and copper. With VFM diets the apparent absorption of Zn and Mn was significantly reduced. On the other hand, with hulls the apparent absorption of Fe was reduced while that of Cu slightly increased. As the amounts of calcium, phosphorus and magnesium in VFM and VFH diets were higher than in the controls, the increased intake resulted in a significant increase in both the apparent absorption and the faecal excretion of these minerals. The inclusion of VFCR in the diet had no significant effect on the mineral content of faeces. The relatively low concentrations of phytate in the bean seeds of 7.8 and 6.7 g/kg for the local and Troy cultivars respectively, could not adequately account for the increased mineral excretion. The results suggest that other seed constituents, possibly the soluble non-starch polysaccharides, may be involved in the elevated loss of Zn and Mn in rats fed on diets containing faba bean for extended periods, while some insoluble structural hull components may interfere with the absorption of Fe from the gut.

Faba bean (Vicia faba): Faecal mineral excretion: Rat.

Type
Effects of Natural Toxicants on Mineral Metabolism
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Anderson, J. W. & Chen, W.-J. L. (1979) Plant fibre, carbohydrate and lipid metabolism. American Journal of Clinical Nutrition 32, 346363.CrossRefGoogle ScholarPubMed
Anderson, J. W., Story, L., Sieling, B., Chen, W.-J. L., Petro, M. S. & Story, J. (1984) Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. American Journal of Clinical Nutrition 40, 11461155.CrossRefGoogle ScholarPubMed
Coates, M. E., O'Donoghue, P. N., Payne, P. R. & Ward, R. J. (1969) In Laboratory Animal Handbooks. 2. Laboratory Standards for Laboratory Rats and Mice, p. 15. London: Laboratory Animals Ltd.Google Scholar
Davies, N. T., Carswell, A. J. P. & Mills, C. F. (1985) The effect of variation in dietary calcium intake on the phytate-Zn interaction in rats. In Trace Elements in Man and Animals – TEMA 5, pp. 456457 [Mills., C. F., Bremner, I. and Chesters, J. K., editors]. Farnham Royal, Slough: CAB.Google Scholar
Davies, N. T. & Nightingale, R. (1975) The effects of phytate on intestinal absorption of zinc, and whole-body retention of Zn, copper, iron and manganese in rats. British Journal of Nutrition 34, 243258.CrossRefGoogle ScholarPubMed
Davies, N. T. & Olpin, S. E. (1979) Studies on the phytate:zinc molar contents in diets as a determinant of Zn availability to young rats. British Journal of Nutrition 41, 591603.CrossRefGoogle ScholarPubMed
Davis, P. N., Norris, L. C. & Kratzer, F. H. (1962) Interference of soybean proteins with the utilization of trace minerals. Journal of Nutrition 77, 217223.CrossRefGoogle ScholarPubMed
Eastwood, W. A. & Kay, R. M. (1979) A hypothesis for the action of dietary fibre along the gastrointestinal tract. American Journal of Clinical Nutrition 32, 364367.CrossRefGoogle ScholarPubMed
Forbes, R. M. (1984) Use of laboratory animals to define physiological functions and bioavailability of zinc. Federation Proceedings 43, 28352839.Google ScholarPubMed
Forbes, R. M., Erdman, J. W. Jr, Parker, H. M., Kondo, H. & Ketelsen, S. M. (1983) Bioavailability of zinc in coagulated soy protein (tofu) to rats and effect of dietary calcium at a constant phytate:zinc ratio. Journal of Nutrition 113, 205210.CrossRefGoogle Scholar
Forbes, R. M., Parker, H. M. & Erdman, J. W. Jr (1984) Effects of dietary phytate, calcium and magnesium levels on zinc bioavailability to rats. Journal of Nutrition 114, 14211425.CrossRefGoogle ScholarPubMed
Forbes, R. M., Weingartner, K. E., Parker, H. M., Bell, R. R. & Erdman, J. W. Jr (1979) Bioavailability to rats of zinc, magnesium and calcium in casein-, egg- and soya protein-containing diets. Journal of Nutrition 109, 16521660.CrossRefGoogle ScholarPubMed
Gillooly, M., Bothwell, T. H., Torrance, J. D., MacPhail, A. P., Derman, D. P., Bezboda, W. R., Mills, W. & Charlton, R. W. (1983) The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables.British Journul of Nutrition 49, 331342.CrossRefGoogle ScholarPubMed
Gitelman, H. J. (1967) An improved automated procedure for the determination of calcium in biological specimens. Analytical Biochemistry 18, 521531.CrossRefGoogle Scholar
Gitelman, H. J., Hurt, C. & Lutwak, L. (1966) An automated spectrophotometric method for magnesium analysis. Analytical Biochemistry 14, 106120.CrossRefGoogle Scholar
Griffiths, D. W. & Jones, D. I. H. (1977) Cellulase inhibition by tannins in the testa of field beans (Vicia faba). Journal of the Science of Food and Agriculture 28, 983989.CrossRefGoogle ScholarPubMed
Harland, B. F. & Oberleas, D. (1986) Anion-exchange method for determination of phytate in foods: collaborative study. Journal of the Association of Official Analytical Chemists 69, 667670.Google ScholarPubMed
Hellendoorn, E. W. (1979) Beneficial physiological activity of leguminous seeds. Qualitas Plantarum. Plant Foods for Human Nutrition 29, 227244.CrossRefGoogle Scholar
Kahn, A., Vohra, P. N. & Kratzer, F. H. (1987) The effect of protein level and dietary guar gum and pectin on copper and zinc utilization in chicks. Nutrition Reports International 36, 193200.Google Scholar
Macarulla, M. T. (1989) Influencia de la ingestion de dietas de Vicia faba L. con diferentes niveles de zinc sobre el estado nutritivo y la respuesta inmune del raton. (Influence of the ingestion of Vicia faba L. diets of different zinc contents on the nutritional state and the immune response of the mouse.) Tesis Doctoral, Universidad de Navarra, Pamplona, Spain.Google Scholar
Martinez, J. A., Barcina, Y. & Larralde, J. (1985) Interrelationships between zinc supply and protein source in young and adult rats. Nutrition Reports International 32, 10371046.Google Scholar
National Advisory Committee on Nutrition Education (1983) Proposals for Nutritional Guidelines for Health Education in Britain. London: Health Education Council.Google Scholar
O'Dell, B. L., Johe, J. M. & Savage, J. E. (1964) Zinc availability in the chick as affected by phytate, calcium and ethylenediaminetetraacetate. Poultry Science 43, 415419.CrossRefGoogle Scholar
Pritchard, P. J., Dryburgh, E. A. & Wilson, B. J. (1973) Carbohydrates of spring and winter field beans (Vicia faba L.). Journal of the Science of Food and Agriculture 24, 663668.CrossRefGoogle Scholar
Reinhold, J. G., Faradji, B., Abadi, P. & Ismail-Beigi, F. (1976) Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. Journal of Nutrition 106, 493503.CrossRefGoogle ScholarPubMed
Roach, A. G. (1965) Application of the Technicon Auto Analyzer equipment to the routine determination of calcium and phosphorus in animal feedstuffs. Automation in Analytical Chemistry, pp. 137144. Basingstoke: Technicon Instruments Co. Ltd.Google Scholar
Rubio, L. A. & Brenes, A. (1988) Plasma mineral concentrations in growing chickens fed diets containing raw and autoclaved faba beans (Vicia faba L.) and faba bean fractions. Nutrition Reports International 38, 609619.Google Scholar
Rubio, L. A., Brenes, A. & Castano, M. (1989) Histological alterations of the pancreas and the intestinal tract produced by raw faba bean (Vicia faba L., minor) diets in growing chicks. British Poultry Science 30, 1528.CrossRefGoogle ScholarPubMed
Rubio, L. A., Brenes, A. & Castano, M. (1990) The utilization of raw and autoclaved faba beans (Vicia faba L., minor) and faba bean fractions in diets for growing broiler chickens. British Journal of Nutrition 63, 419433.CrossRefGoogle Scholar
Rubio, L. A., Grant, G., Bardocz, S., Dewey, P. & Pusztai, A. (1991) Nutritional response of growing rats to faba beans (Vicia faba L., minor) and faba bean fractions. British Journal of Nutrition 66, 533542.CrossRefGoogle ScholarPubMed
Schiller, K. (1960) Ein Stoffwechselkafig für Raten (A metabolism cage for rats). Zeitschrift für Tierphysiologie, Tierernahrung und Futtermittelkunde 15, 305308.CrossRefGoogle Scholar
Sgarbieri, V. C. (1989) Nutritive value of beans. In Nutritional Value of Cereal Products, Beans and Starches, pp. 132199 [Bourne, G. H., editor]. Basel, Switzerland: Karger.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1960) Principles and Procedures of Statistics. New York: McGraw-Hill.Google Scholar
Weingartner, K. E., Erdman, J. W., Parker, H. M. & Forbes, R. M. (1979) Effect of soybean hull upon the bioavailability of zinc and calcium from soy flour-based diets. Nutrition Reports International 19, 223231.Google Scholar