Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T09:53:04.792Z Has data issue: false hasContentIssue false

Micronutrients: oxidant/antioxidant status

Published online by Cambridge University Press:  09 March 2007

Patricia Evans*
Affiliation:
Department of Haematology, Royal Free and University College Medical School, University College London, 98 Chenies Mews, London WC1E 6HX, UK
Barry Halliwell
Affiliation:
Department of Biochemistry, National University of Singapore, Kent Ridge Crescent, Singapore 119260
*
*Corresponding author: Dr Patricia Evans, fax +44 020 7209 6222, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Potentially damaging species (reactive oxygen, nitrogen and chlorine species) arise as by-products of metabolism and as physiological mediators and signalling molecules. Levels of these species are controlled by the antioxidant defence system. Several components of this system are micronutrients (e.g. vitamins C and E) or are dependent upon dietary micronutrients (e.g. CuZn and Mn superoxide dismutase). The antioxidant defences act as a coordinated system where deficiencies in one component may affect the efficiency of the others. Oxidative stress may be an important factor in infection if micronutrients are deficient.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2001

References

Bartal, M, Mazor, D, Dvilansky, A & Meyerstein, N (1993) Iron deficiency anaemia: recovery from in vitro oxidative stress. Acta Haematology 90, 9498.CrossRefGoogle ScholarPubMed
Beck, MA, Shi, Q, Morris, VC & Levander, OA (1995) Rapid genomic evolution of a non-virulent coxsackie virus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nature Medicine 1, 433436.CrossRefGoogle ScholarPubMed
Bettger, WJ, Reeves, PG, Savage, JE & O'Dell, BL (1980) Interaction of zinc and vitamin E in the chick. Proceedings of the Society for Experimental Biology & Medicine 163, 432436.CrossRefGoogle ScholarPubMed
Bindoli, A, Rigobello, MP & Deeble, DJ (1992) Biochemical and toxological properties of the oxidation products of catecholamines. Free Radical Biology and Medicine 13, 391405.CrossRefGoogle Scholar
Bredt, DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radical Research 31, 577596.CrossRefGoogle ScholarPubMed
Buring, JE & Hennekens, CH (1997) Antioxidant vitamins and cardiovascular disease. Nutrition Reviews 55(1 Pt 2), S53-S58.CrossRefGoogle ScholarPubMed
Caddell, JL (1995) Hypothesis: the possible role of magnesium and copper deficiency in retinopathy of prematurity. Magnesium Research 8, 261270.Google ScholarPubMed
Caddell, JL (1996 a) A review of evidence for a role of magnesium and possibly copper deficiency in necrotizing enterocolitis. Magnesium Research 9, 5566.Google ScholarPubMed
Caddell, JL (1996 b) Evidence for magnesium deficiency in the pathogenesis of bronchopulmonary dysplasia. Magnesium Research 9, 205216.Google ScholarPubMed
Colditz, GA, Manson, JE & Hankinson, SE (1997) The Nurses' Health Study: 20-year contribution to the understanding of health among women. Journal of Women's Health 6, 4962.CrossRefGoogle Scholar
Dashti, SI, Thomson, M & Mameesh, MS (1995) Effects of copper deficiency and copper complexes on superoxide dismutase in rats. Nutrition 11 (5 Suppl), 564567.Google ScholarPubMed
Diplock, AT (1993) Indexes of selenium status in human populations. American Journal of Clinical Nutrition 57(2 Suppl), 256S-258S.CrossRefGoogle ScholarPubMed
Enstrom, JE, Kanim, LE & Klein, MA (1992) Vitamin C intake and mortality among a sample of the United States population. Epidemiology 3, 194202.CrossRefGoogle ScholarPubMed
GISSI-Prevenzione Investigators (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354(9177), 447455.CrossRefGoogle Scholar
Golden, MHN, Ramdath, DD & Golden, BE (1991) Free radicals and malnutrition. In Essential Trace Elements in Antioxidant Processes, pp. 199221 [Dreosti, IE, editor]. Totowa, NJ: The Humana Press Inc.Google Scholar
Halliwell, B (1996 a) Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radical Research 25, 5774.CrossRefGoogle ScholarPubMed
Halliwell, B (1996 b) Vitamin C: antioxidant or pro-oxidant in vivo? Free Radical Research 25, 439454.CrossRefGoogle ScholarPubMed
Halliwell, B (1999) Establishing the significance and optimal intake of dietary antioxidants: the biomarker concept. Nutrition Review 57, 104113.CrossRefGoogle ScholarPubMed
Halliwell, B (2000) The antioxidant paradox. Lancet 355, 11791180.CrossRefGoogle ScholarPubMed
Halliwell, B & Gutteridge, JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Letters 307, 108112.CrossRefGoogle ScholarPubMed
Halliwell, B & Gutteridge, JMC (1999) Free Radical Biology and Medicine,3rd edition. Oxford: Oxford University Press.Google Scholar
Hennig, B, Toborek, M & McClain, CJ (1996) Antiatherogenic properties of zinc: implications in endothelial cell metabolism. Nutrition 12, 711717.CrossRefGoogle ScholarPubMed
Jabs, T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology 57, 231245.CrossRefGoogle ScholarPubMed
Jankowski, MA, Uriu-Hare, JY, Rucker, RB, Rogers, JM & Keen, CL (1995) Maternal zinc deficiency, but not copper deficiency or diabetes, results in increased embryonic cell death in the rat: implications for mechanisms underlying abnormal development. Teratology 51, 8593.CrossRefGoogle ScholarPubMed
Kardinaal, AF, Kok, FJ, Ringstad, J, Gomez-Aracena, J, Mazaev, VP, Kohlmeier, L, Martin, BC, Aro, A, Kark, JD & Delgado-Rodriguez, M (1993) Antioxidants in adipose tissue and risk of myocardial infarction: the EURAMIC Study. Lancet 342, 13791384.CrossRefGoogle ScholarPubMed
Keusch, GT (1990) Micronutrients and susceptibility to infection. Annals of the New York Academy of Sciences 587, 181188.CrossRefGoogle ScholarPubMed
Knutson, MD, Walter, PB, Ames, BN & Viteri, FE (1999) Both iron deficiency and daily iron supplements increase lipid peroxidation in rats. Journal of Nutrition 130, 621628.CrossRefGoogle Scholar
Kramer, JH, Misik, V & Weglicki, WB (1994) Magnesium deficiency potentiates free radical production associated with post-ischemic injury to rat hearts: vitamin E affords protection. Free Radical Biology and Medicine 16, 713723.CrossRefGoogle Scholar
Kraus, A, Roth, HP & Kirchgessner, M (1997) Influence of vitamin C, vitamin E and beta-carotene on the osmotic fragility and the primary antioxidant system of erythrocytes in zinc-deficient rats. Archives fur Tierernahrung 50, 257269.CrossRefGoogle ScholarPubMed
Kwik-Uribe, CL, Golubt, MS & Keen, CL (1999) Behavioural consequences of marginal iron deficiency during development in a murine model. Neurotoxicology & Teratology 21, 661672.CrossRefGoogle ScholarPubMed
Lebovitz, RM, Zhang, H, Vogel, H, CartwrightJ Jr, J Jr,, Dionne, L, Lu, N, Huang, S & Matzuk, MM (1996) Neurodegeneration, myocardial injury and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proceedings of National Academy of Sciences, USA 93, 97829787.CrossRefGoogle ScholarPubMed
McLaran, CJ, Bett, JH, Nye, JA & Halliday, JW (1982) Congestive myocardiopathy and haemochromatosis – rapid progression possibly accelerated by excessive ingestion of ascorbic acid. Australian and New Zealand Journal of Medicine 12, 187188.CrossRefGoogle ScholarPubMed
Melov, S, Schneider, JA, Day, BJ, Hinerfeld, D, Coskun, P, Mirra, SS, Crapo, JD & Wallace, DC (1998) A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismustase. Nature Genetics 18, 159163.CrossRefGoogle Scholar
Olin, KL, Shigenaga, MK, Ames, BN, Golub, MS, Gershwin, ME, Hendrickx, AG & Keen, CL (1993) Maternal zinc influences DNA strand break and 8-hydroxy-2′-deoxyguanosine levels in infant rhesus monkey liver. Proceedings of the Society for Experimental Biology and Medicine 203, 461466.CrossRefGoogle ScholarPubMed
Oteiza, PI, Olin, KL, Fraga, CG & Keen, CL (1995) Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. Journal of Nutrition 125, 823829.Google ScholarPubMed
Pace, GW & Leaf, CD (1995) The role of oxidative stress in HIV disease. Free Radical Biology & Medicine 19, 523528.CrossRefGoogle ScholarPubMed
Peterhans, E (1997) Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. Journal of Nutrition 127(5 Suppl), 962S-965S.CrossRefGoogle ScholarPubMed
Postma, NS, Mommers, EC, Eling, WM & Zuidema, J (1996) Oxidative stress in malaria; implications for prevention and therapy. Pharmacy World & Science 18, 121129.CrossRefGoogle ScholarPubMed
Rao, J & Jagadeesen, V (1996) Lipid peroxidation and activities of antioxidant enzymes in iron deficiency and effect of carcinogen feeding. Free Radical Biology and Medicine 21, 103108.CrossRefGoogle ScholarPubMed
Rayssiguier, Y, Durlach, J, Gueux, E, Rock, E & Mazur, A (1993) Magnesium and ageing. I Experimental data: importance of oxidative damage. Magnesium Research 6, 369378.Google ScholarPubMed
Rehman, A, Collis, CS, Yang, M, Kelly, M, Diplock, AT, Halliwell, B & Rice-Evans, C (1998) The effects of iron and vitamin C co-supplementation on oxidative damage to DNA in healthy volunteers. Biochemical Biophysics Research Communications 246, 293298.CrossRefGoogle ScholarPubMed
Reizenstein, P (1991) Iron, free radicals and cancer. Medical Oncology and Tumour Pharmacotherapy 8, 229233.CrossRefGoogle ScholarPubMed
Riemersma, RA, Wood, DA, Macintyre, CC, Elton, RA, Gey, KF & Oliver, MF (1991) Risk of angina pectoris and plasma concentrations of vitamins A, C and E and carotene. Lancet 337, 15.CrossRefGoogle Scholar
Rowbotham, B & Roeser, HP (1984) Iron overload associated with congenital pyruvate kinase deficiency and high dose ascorbic acid ingestion. Australian and New Zealand Journal of Medicine 14, 667669.CrossRefGoogle ScholarPubMed
Saari, JT (1989) Chronic treatment with dimethyl sulphoxide protects against cardiovascular defects of copper deficiency. Proceedings of the Society for Experimental Biology and Medicine 190, 121124.CrossRefGoogle ScholarPubMed
Sandstead, HH (1994) Understanding zinc: recent observations and interpretations. Journal of Laboratory and Clinical Medicine 124, 322327.Google ScholarPubMed
Schwarz, KB (1996) Oxidative stress during viral infection: a review. Free Radical Biology & Medicine 21, 641649.CrossRefGoogle ScholarPubMed
Semba, RD & Tang, AM (1999) Micronutrients and the pathogenesis of human immunodeficiency virus infection. British Journal of Nutrition 81, 181189.CrossRefGoogle ScholarPubMed
Stephens, NG, Parsons, A, Schofield, PM, Kelly, F, Cheeseman, K & Mitchinson, MJ (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study. Lancet 347, 781786.CrossRefGoogle ScholarPubMed
Stewart, BW (1994) Mechanisms of apoptosis: Integration of genetic, biochemical, and cellular indicators. Journal of the National Cancer Institute 86, 12861296.CrossRefGoogle ScholarPubMed
Sukalski, KA, LaBerge, TP & Johnson, WT (1997) In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency. Free Radical Biology and Medicine 22, 835842.CrossRefGoogle ScholarPubMed
Taylor, CG, Bettger, WJ & Bray, TM (1988) Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats. Journal of Nutrition 118, 613621.CrossRefGoogle ScholarPubMed
Toledo, I, Aguirre, J & Hansburg, W (1994) Enzyme inactivation related to a hyperoxidant state during conidiation of Neurospora crassa. Microbiology 140(Pt 9), 23912397.CrossRefGoogle ScholarPubMed
Turrens, JF, Crapo, JD & Freeman, BA (1984) Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. Journal of Clinical Investigation 73, 8795.CrossRefGoogle ScholarPubMed
Udenfriend, S, Clark, T, Axelrod, J & Brodie, BB (1954) Ascorbic acid in aromatic hydroxylation. Journal of Biological Chemistry 208, 731739.CrossRefGoogle ScholarPubMed
Wilkins, GM & Leake, DS (1994) The oxidation of low density lipoprotein by cells or iron is inhibited by zinc. FEBS Letters 341, 259262.CrossRefGoogle ScholarPubMed
Young, IS, Trouton, TG, Torney, JJ, McMaster, D, Callender, ME & Trimble, ER (1994) Antioxidant status and lipid peroxidation in hereditary haemochromatosis. Free Radical Biology and Medicine 16, 393397.CrossRefGoogle ScholarPubMed
Winterbourn, CC (1985) Free radical production and oxidative reactions of haemoglobin. Environmental Health Perspectives 64, 321330.CrossRefGoogle Scholar
Zidenberg-Cherr, S, Keen, CL, Lonnerdal, B & Hurley, LS (1983) Superoxide dismutase activity and lipid peroxidation in the rat: developmental correlations affected by manganese deficiency. Journal of Nutrition 113, 24982504.CrossRefGoogle ScholarPubMed
Zidenberg-Cherr, S & Keen, CL (1991) Trace Elements, micronutrients, and free radicals. In Essential Trace Elements in Antioxidant Processes, pp.107 [Dreosti, IE, editor]. Totowa, NJ: The Humana Press Inc.Google Scholar
Zidenberg-Cherr, S, Han, B, Dubrick, MA & Keen, CL (1991) Influence of dietary induced copper and manganese deficiency on ozone-induced changes in lung and liver antioxidant systems. Toxicology Letters 57, 8191.CrossRefGoogle ScholarPubMed