Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T14:39:36.710Z Has data issue: false hasContentIssue false

Metabolism of zinc and copper in the neonate: accumulation of Cu in the gastrointestinal tract of the newborn rat

Published online by Cambridge University Press:  09 March 2007

R. Mason
Affiliation:
Toxicology Unit, MRC Laboratories, Woodmansterne Road, Carshalton, Surrey SM5 4EF
F. O. Brady
Affiliation:
Toxicology Unit, MRC Laboratories, Woodmansterne Road, Carshalton, Surrey SM5 4EF
M. Webb
Affiliation:
Toxicology Unit, MRC Laboratories, Woodmansterne Road, Carshalton, Surrey SM5 4EF
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The concentration of copper in the rat intestine was found to increase rapidly after birth to a maximum greater than 140 μg/g wet weight at 2 d of age and then to decline, at first slowly to 90 μg/g wet weight on day thirteen and then rapidly to 40 μg/g and 3.4 μg/g wet weight on the 15th and 19th day respectively. The intestinal concentration of Zn, which doubled between 1 d prepartum and 2 d post partum, also fell slowly until 10 d of age, but thereafter remained constant.

2. From the 2nd to the 15th day post partum approximately 60% of the total Cu and 50% of the total zinc in the intestine was located in the soluble fraction of the tissue. Most of the Zn in this fraction was bound by proteins of molecular weights greater than 13700 daltons, whereas most of the Cu was present as an extremely polydisperse complex of lower molecular weight. This complex in the intestine of the 5-d-old rat, in contrast with the soluble proteins of higher molecular weight. This complex in the intestine of the 5-d-old rat, in contrast with the soluble proteins of higher molecular weight, did not incorporate either 3H or 35S within 4 h of the administration of L-[4,5-3]leucine and L-[35S]cystine.

3. The loss of Cu from the intestine between the 13th and 15th day of post-natal age occurred mainly from this complex and was accompanied by the transient appearance of Cu in a fraction of low molecular weight.

4. At 21 d of age the soluble fraction of the intestine contained only a small amount of Cu. This was distributed between two protein fractions, one of which contained Zn and appeared to be a metallothionein.

5. The results are discussed in relation to the control of Zn and Cu absorption.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Bainter, K. & Veress, B. (1970). Experientia 26, 54.CrossRefGoogle Scholar
Bakka, A., Samarawickrama, O. P. & Webb, M. (1981). Chem. Biol. Interactions. (In the Press.)Google Scholar
Bakka, A. & Webb, M. (1981). Biochem. Pharmacol. (In the Press.)Google Scholar
Bremner, I. & Young, B. W. (1976). Biochem. J. 157, 517.CrossRefGoogle Scholar
Camakaris, J., Mann, J. R. & Danks, D. M. (1979). Biochem. J. 180, 597.CrossRefGoogle Scholar
Clark, S. L. (1959). J. biophys. biochem. Cytol. 5, 41.CrossRefGoogle Scholar
Clarke, R. M. & Hardy, R. N. (1969a). J. Physiol., Lond. 204, 113.CrossRefGoogle Scholar
Clarke, R. M. & Hardy, R. N. (1969b). J. Physiol., Lond. 204, 127.CrossRefGoogle Scholar
Cousins, R. J., Smith, K. M., Failla, M. L. & Markowitz, L. A. (1978). Life Sci. 23, 1819.CrossRefGoogle Scholar
Davis, B. J. (1964). Ann. N.Y. Acad. Sci. 121, 404.CrossRefGoogle Scholar
Deren, J. J. (1968). In Handbook OfPhysiology, Section 6, Alimentary Canal, vol. 3, p. 1099 [Cook, C. F., editor]. Washington DC: American Physiological Society.Google Scholar
Duncan, J. R. & Hurley, L. S. (1978). Am. J. Physiol. 235, E556.Google Scholar
Evans, G. W. (1979). In Metallothionein, pp. 321329 [Kagi, J. H. R. and Nordberg, M., editors]. Basel, Boston and Stuttgart: Birkhauser Verlag.CrossRefGoogle ScholarPubMed
Forbes, G. B. & Reina, J. C. (1972). J. Nutr. 102, 647.CrossRefGoogle Scholar
Hall, A. C., Young, B. W. & Bremner, I. (1979). J. inorg. Biochem. 11, 57.CrossRefGoogle Scholar
Halliday, R. (1955). Proc. R. Soc. B 143, 408.Google Scholar
Halliday, R. (1956). Proc. R. Soc. B 145, 179.Google Scholar
Hurley, L. S., Duncan, J. R., Sloan, M. V. & Eckhert, C. D. (1977). Proc. natn. Acad. Sci. U.S.A. 74, 3547.CrossRefGoogle Scholar
Jugo, S. (1977). Environ. Res. 13, 36.CrossRefGoogle Scholar
Jugo, S. (1979). In The Biogeochemistry of Mercury in the Environment, p. 48 [Nriagu, J. O., editor]. Amsterdam: Elsevier/North Holland.Google Scholar
Mason, R., Bakka, A., Samarawickrama, G. P. & Webb, M. (1981). Br. J. Nutr. 45, OOO.Google Scholar
Mills, C. F. & Davies, N. T. (1979). Ciba Fdn Symp. no. 70, p. 247.Google Scholar
Mistiles, S. P. & Meamck, P. T. (1969). Scand. J. Gastroent. 4, 691.CrossRefGoogle Scholar
Morris, I. G. (1968). In Handbook Of Physiology. Section 6, Alimentary Canal, vol. 3, p. 1491 [Cook, C. F., editor]. Washington, DC: American Physiological Society.Google Scholar
Mutch, P. B. & Hurley, L. S. (1974). J. Nutr. 104, 828.CrossRefGoogle Scholar
Richards, M. P. & Cousins, R. J. (1975). Biochem. biophys. Res. Commun. 64, 1215.CrossRefGoogle Scholar
Richards, M. P. & Cousins, R. J. (1976 a). J. Nutr. 106, 1591.CrossRefGoogle Scholar
Richards, M. P. & Cousins, R. J. (1976 b). Proc. Soc. exp. Biol. Med. 153, 52.CrossRefGoogle Scholar
Samarawickrama, G. P. (1979). PhD Thesis (CNAA London).Google Scholar
Sasser, L. B. & Jarboe, G. E. (1977). Toxicol. appl. Pharmac. 41, 421.CrossRefGoogle Scholar
Shiraishi, Y. & Ichikawa, R. (1972). Hlth Phys. 22, 373.CrossRefGoogle Scholar
Terao, T. & Owen, C. A. (1977). Am. J. Physiol. 232, E172.Google Scholar
Webb, M. (editor) (1979). In The Chemistry, Biochemistry and Biology of Cadmium, p. 195. Amsterdam: Elsevier/North Holland.Google Scholar