Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T14:51:23.087Z Has data issue: false hasContentIssue false

Metabolism of zinc and copper in the neonate: accumulation and function of (Zn, Cu)-metallothionein in the liver of the newborn rat

Published online by Cambridge University Press:  09 March 2007

R. Mason
Affiliation:
Toxicology Unit, MRC Laboratories, Woodmansterne Road, Carshalton, Surrey SM5 4EF
A. Bakka
Affiliation:
Toxicology Unit, MRC Laboratories, Woodmansterne Road, Carshalton, Surrey SM5 4EF
G. P. Samarawickrama
Affiliation:
Toxicology Unit, MRC Laboratories, Woodmansterne Road, Carshalton, Surrey SM5 4EF
M. Webb
Affiliation:
Toxicology Unit, MRC Laboratories, Woodmansterne Road, Carshalton, Surrey SM5 4EF
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Measurements were made of the hepatic concentrations and contents of total and thionein-bound zinc and copper in late foetal and newborn rats and of the distribution of these metals between the particulate and soluble components of the liver.

2. The decrease in the hepatic concentration of thionein-bound Zn, which occurred with age after birth, was proportional to the increase in liver weight until the 16th day post partum; thereafter it was greater.

3. Throughout the period from birth to 25 d of age the Zn concentration remained constant in the cytosolic non-thionein fraction (i.e. total cytoplasmic Zn – thionein-bound Zn). but decreased in other compartments of the liver.

4. The same constant concentration of cytoplasmic non-thionein-bound Zn also was observed in animals with reduced total hepatic Zn contents, but normal body-weights, and in 20-d-old Zn-deficient pups.

5. The concentration of thionein-bound Cu exhibited two maxima, one at 2 d of age and the second at 14 d.

6. The total hepatic content of Cu increased significantly only between the 6th and 14th day post partum. The age-related variations in Cu contents of the particulate components closely paralleled those in the whole liver, whereas the Cu contents of the cytosolic thionein and non-thionein fractions did not increase appreciably until after the 10th day.

7. It is concluded that the cytosolic non-thionein fraction of newborn rat liver may contain particularly important metabolic sites that require Zn and a major function of Zn-thionein is to regulate is to regulate the supply of the metal to these sites. As, from birth to 26 d of age, the sum of the concentrations of thionein-bound Zn and Cu was correlated with whole liver Zn, the accumulation of Cu as a soluble metallothionein seems to be a secondary event, dependent on the hepatic Zn concentration.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Bakka, A., Samarawickrama, G. P. & Webb, M. (1981). Chem. Biol. Interact. (In the Press.)Google Scholar
Bakka, A. & Webb, M. (1981). Biochem. Pharmacol. (In the Press.)Google Scholar
Bell, J. U. (1979). Toxic. appl. Pharmac. 50, 101.Google Scholar
Bergel, F., Everett, A. J. L., Martin, J. B. & Webb, J. S. (1957). J. Pharm. Pharmac. 9, 522.Google Scholar
Bremner, I. & Davies, N. T. (1974). Biochem. Soc. Trans. 2, 425.CrossRefGoogle Scholar
Bremner, I. & Davies, N. T. (1975). Biochem. J. 149, 733.CrossRefGoogle Scholar
Bremner, I., Davies, N. T. & Mills, C. F. (1973). Biochem. Soc. Truns. 1, 982.Google Scholar
Bremner, I. & Marshall, R. B. (1974). Br. J. Nutr. 32, 293.CrossRefGoogle Scholar
Cab, K. & Holt, D. E. (1979). Chem. Biol. Interact. 28, 91.Google Scholar
Doljanski, F. (1960). Int. Rev. Cytol. 10, 217.Google Scholar
Enesco, M. & LeBlond, C. P. (1962). J. Embryol. exp. Morph. 10, 530.Google Scholar
Evans, G. W. (1979). In Metallothionein, p. 321 [Kagi, J. H. R. and Nordberg, M., editors]. Basel, Boston and Stuttgart: Birkhauser Verlag.CrossRefGoogle ScholarPubMed
Evans, G. W., Wolenitz, M. L. & Grace, C. I. (1975). Nutr. Rep. int. 12, 261.Google Scholar
Geller, B. L. & Winge, D. R. (1980). Am. Soc. biol. Chem. New Orleans. Abstr. 864.Google Scholar
Kagi, J. R. H. & Nordberg, M. (editors) (1979). In Metallothionein, p. 1. Basel, Boston and Stuttgart: Birkhauser Verlag.CrossRefGoogle ScholarPubMed
Kaszpar, B. W., Piotrowski, J. K., Marciniak, W. & Sieleznska, M. (1976). Bromat. Chem. 9, 315.Google Scholar
Killewich, L. A. & Feigelson, P. (1977). Proc. natn. Acad. Sci. U.S.A. 74, 5392.CrossRefGoogle Scholar
Kojima, Y. & Kagi, J. H. R. (1978). Trends Biochem. Sci. 3, 90.CrossRefGoogle Scholar
Mason, R., Brady, F. O. & Webb, M. (1981). Br. J. Nutr. 45, 391.CrossRefGoogle Scholar
Mutch, P. B. & Hurley, L. S. (1974). J. Nutr. 104, 828.CrossRefGoogle Scholar
Oh, S. H. & Whanger, P. D. (1979). Am. J. Physiol. 237, E18.Google Scholar
Ohtake, H., Hasegawa, K. & Koga, M. (1978). Biochem. J. 174, 999.Google Scholar
Ohtake, H. & Koga, M. (1979). Biochem. J. 183, 683.CrossRefGoogle Scholar
Porter, H. (1974). Biochem. biophys. Res. Commun. 56, 61.Google Scholar
Potter Van, R., Schneider, W. C. & Liebl, G. H. (1945). Cancer Res. 5, 21.Google Scholar
Richards, M. P. & Cousins, R. J. (1975). Biochem. biophys. Res. Commun. 64, 1215.Google Scholar
Richards, M. P. & Cousins, R. J. (1976a). J. Nutr. 106, 1591.Google Scholar
Richards, M. P. & Cousins, R. J. (1976a). Proc. Soc. exp. Biol. Med. 153, 52.Google Scholar
Riordan, J. R. & Richards, V. (1980). J. biol. Chem. 255, 5380.CrossRefGoogle Scholar
Rupp, H. & Weser, U. (1974). FEBS Lett. 44, 293.Google Scholar
Ryden, L. & Deutsch, H. (1978). J. biol. Chem. 253, 519.Google Scholar
Samarawickrama, G. P. (1979). PhD Thesis, CNAA, London.Google Scholar
Sandstead, H. H., Gillespie, D. D. & Brady, C. N. (1972). Pediat. Res. 6, 119.Google Scholar
Terao, T. & Owen, C. A. (1977). Am. J. Physiol. 232, E172.Google Scholar
Thompson, R. H. & Blanchflower, W. J. (1971). Lab. Prac. 20, 859.Google Scholar
Udom, A. O. & Brady, F. O. (1980). Biochem. J. 187, 329.Google Scholar
Utsumi, K., Yoshioka, T., Yamanaka, N. & Nakazawa, T. (1977). FEBS Lett. 79, 1.Google Scholar
Webb, M. (1972). Biochem. Pharmac. 21, 2751.Google Scholar
Webb, M. (1979a). In Metallothionein, p. 313 [Kagi, J. H. R. and Nordberg, , editors]. Basel, Boston and Stuttgart: Birkhauser Verlag.Google Scholar
Webb, M. (editor) (1979 b). In The Chemistry, Biochemistry and Biology of Cadmium, p. 195. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Webb, M., Plastow, S. R. & Magos, L. (1979). Life Sci. 24, 1901.Google Scholar
Webster, W. S. (1978). Arch envir. Hlth 33, 36.Google Scholar
Williams, R. B., Davies, N. & Mcdonald, I. (1978). Br. J. Nutr. 38, 407.Google Scholar
Wong, K.-L., & Klaassen, C. D. (1979). J. biol. Chem. 254, 12399.CrossRefGoogle Scholar