Hostname: page-component-5f745c7db-f9j5r Total loading time: 0 Render date: 2025-01-06T13:40:14.687Z Has data issue: true hasContentIssue false

Metabolism of urea in late pregnancy and the possible contribution of amino acid carbon to glucose synthesis in sheep

Published online by Cambridge University Press:  09 March 2007

J. V. Nolan
Affiliation:
Department of Biochemistry and Nutrition, School of Rural Science, University of New England, Armidale, NSW 2351, Australia
R. A. Leng
Affiliation:
Department of Biochemistry and Nutrition, School of Rural Science, University of New England, Armidale, NSW 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Metabolism of urea in non-pregnant and pregnant sheep (1–25 d from term) has been examined. Injections of [14C]urea were used to estimate urea entry rate, urea pool size and urea space in sheep given 1000 g of a diet of equal parts of crushed oats and chaffed lucerne hay (day a) and in the same sheep 4 d after the ration had been reduced to 250 g (day b).

2. On both experimental days (a and b), mean pool size was greater (14% on day α, 29% on day b) and urea space was greater (54% on day α, 24% on day b) in pregnant animals than in non-pregnant animals; mean plasma urea concentrations were lower (35%) in the pregnant animals on day a but were not significantly different on day b.

3. The entry rate of urea was similar in all the animals on day a, but was significantly higher (34%) in pregnant than in non-pregnant animals on day b. There was a significant decrease in urea entry rate in both pregnant (33%) and non-pregnant (86%) animals on day b.

4. The rate of excretion of urea was lower (26% on day a, 35% on day b) in pregnant animals, indicating a higher (31% on day α, 40% on day b) rate of degradation of urea in the digestive tract of pregnant as compared with non-pregnant sheep.

5. Measurements of urea entry rate have been used to calculate the upper limit of amino acid deamination in pregnant and non-pregnant sheep, and this has been used as an indication of the potential availability of amino acid carbon for glucose synthesis. It is suggested that, at a maximum, amino acids may have contributed the carbon required for 63 g/d and 52 g/d of glucose on days a and b respectively.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

REFERENCES

Alexander, D. P., Nixon, D. A., Widdas, W. F. & Wohlzogen, F. X. (1958). J. Physiol., Lond. 140, 1.CrossRefGoogle Scholar
Armstrong, D. G. & Beever, D. E. (1969). Proc. Nutr. Soc. 28, 121.CrossRefGoogle Scholar
Assali, N. S., Dilts, P. V., Plentl, A. A., Kirschbaum, T. H. & Gross, S. J. (1968). In Biology of Gestation Vol. 1 [Assali, N. S., editor]. London: Academic Press.Google Scholar
Barcroft, J. (1946). Researches on Pre-natal Life. Oxford: Blackwell.Google Scholar
Beaton, G. H. (1957). Archs Biochem. Biophys. 67, 1.CrossRefGoogle Scholar
Bergman, E. N. (1963). Am. J. Physiol. 204, 147.CrossRefGoogle Scholar
Bergman, E. N., Roe, W. E. & Kon, K. (1966). Am. J. Physiol. 211, 793.CrossRefGoogle Scholar
Bergman, E. N., Starr, D. J. & Reulein, S. S. Jr (1968). Am. J. Physiol. 215, 874.CrossRefGoogle Scholar
Botell-Llusia, J. (1936). Arch. Gynaek. 161, 254.CrossRefGoogle Scholar
Clark, R. (1965). Jl S. Afr. vet. med. Ass. 36, 75.Google Scholar
Cocimano, M. R. & Leng, R. A. (1967). Br. J. Nutr. 21, 353.CrossRefGoogle Scholar
Dintzis, R. Z. & Hastings, A. B. (1953). Proc. natn. Acad. Sci. U.S.A. 39, 571.CrossRefGoogle Scholar
Forbes, J. M. (1968). J. agric. Sci., Camb. 72, 119.CrossRefGoogle Scholar
Ford, E. J. H. (1963). Biochem. J. 88, 427.CrossRefGoogle Scholar
Graham, N. McC. (1968). Aust. J. agric. Res. 19, 555.Google Scholar
Graham, N. McC. & Williams, A. J. (1962). Aust. J. agric. Res. 13, 894.Google Scholar
Hecker, J. F. (1967). Studies on the metabolism of nitrogenous compounds in the large intestine of herbivores. PhD Thesis, University of Cambridge.Google Scholar
Houpt, T. R. (1959). Am. J. Physiol. 197, 115.CrossRefGoogle Scholar
Huggett, A. St G. & Nixon, D. A. (1957). Biochem. J. 66, 12P.Google Scholar
Judson, G. J. & Leng, R. A. (1968). Proc. Aust. Soc. Anim. Prod. 7, 354.Google Scholar
Kornberg, H. L., Davies, R. E. & Wood, D. R. (1954). Biochem. J. 56, 363.CrossRefGoogle Scholar
Krebs, H. A. (1964). In Munzmalian Protein Metabolism Vol. 1., Ch. 5, p. 163 [Munro, H. N. and Allison, J. B., editors]. London: Academic Press.Google Scholar
Kronfeld, D. S. (1957). Aust. J. exp. Biol. med. Sci. 35, 257.CrossRefGoogle Scholar
Kronfeld, D. S. & Simesen, M. G. (1961). Am. J. Physiol. 201, 639.CrossRefGoogle Scholar
Leng, R. A. (1970). Adv. vet. Sci. 14, 209.Google Scholar
Leng, R. A., Steel, J. W. & Luick, J. R. (1967). Biochem. J. 103, 785.CrossRefGoogle Scholar
Leng, R. A. & West, C. E. (1969). Res. vet. Sci. 10, 57.CrossRefGoogle Scholar
Levenson, S. M., Crowley, L. V., Horowitz, R. E. & Malm, O. J. (1959). J. biol. Chem. 234, 2061.CrossRefGoogle Scholar
Marsh, W. H., Fingerhut, B. & Kirsch, E. (1957). Am. J. clin. Path. 28, 681.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1968). Proc. Aust. Soc. Anim. Prod. 7, 378.Google Scholar
Packett, L. V. & Groves, T. D. D. (1965). J. Anim. Sci. 24, 341.CrossRefGoogle Scholar
Patterson, M. S. & Greene, R. C. (1965). Analyt. Chem. 37, 854.CrossRefGoogle Scholar
Phillipson, A. T. (1964). In Mammalian Protein Metabolism Vol. 1, p. 71 [Munro, H. N. and Allison, J. B., editors]. London: Academic Press.CrossRefGoogle Scholar
Raabe, R. (1968). Lab. Pract. 17, 217.Google Scholar
Rahman, S. A. & Decker, P. (1966). Nature, Lond. 209, 618.CrossRefGoogle Scholar
Reid, R. L. (1960). Aust. J. agric. Res. 11, 364.CrossRefGoogle Scholar
Robinson, J. J. & Forbes, T. J. (1967). Br. J. Nutr. 21, 879.CrossRefGoogle Scholar
Schmidt–Nielsen, B., Schmidt–Nielsen, K., Houpt, T. R. & Jarnum, K. (1957). Am. J. Physiol. 188, 477.CrossRefGoogle Scholar
Steel, J. W. & Leng, R. A. (1968). Proc. Aust. Soc. Anim. Prod. 7, 342.Google Scholar
Tanayama, S. & Ui, M. (1963). Chem. phurmaceut. Bull., Tokyo 11, 835.CrossRefGoogle Scholar
von Engelhardt, W. & Nickel, W. (1965). Pflügers Arch. ges. Physiol. 286, 57.CrossRefGoogle Scholar
Waldo, D. R. (1968). J. Dairy Sci. 51, 265.CrossRefGoogle Scholar
Wilson, B. W. (1966). Clin. Chem. 12, 230.CrossRefGoogle Scholar