Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T09:55:06.680Z Has data issue: false hasContentIssue false

The metabolism of glucose, acetate, palmitate, stearate and oleate in pigs

Published online by Cambridge University Press:  09 March 2007

C. P. Freeman
Affiliation:
Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford
D. E. Noakes
Affiliation:
Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford
E. F. Annison
Affiliation:
Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Isotope dilution techniques were used to measure the rates of entry and oxidation of glucose, acetate, palmitate, stearate and oleate in fed and fasted (16 h) pigs.

2. Glucose entry rates measured in eight fed and five fasted (16 h) pigs were 20.6 and 8.0 mg/min per kg0.75 (mean values) respectively. The entry rates in fed pigs were lower than the calculated rates of glucose uptake from the alimentary tract, and the validity of glucose entry rates determined under these conditions is discussed.

3. Acetate entry rates were unrelated to the fibre content of the diet, and acetate produced from endogenous metabolism was the main contributor to total acetate production.

4. Increased rates of entry and oxidation of palmitate, stearate and oleate were observed in fasted pigs.

5. Glucose production in fasted pigs was inhibited by raising the concentration of blood glucose. Infusion of insulin in the fed pig caused a decrease in glucose production and a simultaneous reduction in the mobilization of free fatty acids. When blood glucose concentrations fell below about 55 mg/100 ml the release of free fatty acid into the circulation was restored.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

REFERENCES

Annison, E. F. (1964). In Metabolism and Physiological Significance of Lipids p. 289 [Dawson, R. M. C. and Rhodes, D. N., editors]. London: John Wiley and Sons (Inc.).Google Scholar
Annison, E. F., Brown, R. E., Leng, R. A., Lindsay, D. B. & West, C. E. (1967). Biochem. J. 104, 135.CrossRefGoogle Scholar
Annison, E. F. & Lindsay, D. B. (1961). Biochem. J. 78, 777.CrossRefGoogle Scholar
Annison, E. F., Lindsay, D. B. & White, R. R. (1963). Biochem. J. 88, 243.CrossRefGoogle Scholar
Annison, E. F., Shrimpton, D. H. & West, C. E. (1969). In Energy Metabolism of Farm Animals p. 339 [Blaxter, K. L., Kielanowski, J. and Thorbek, G., editors]. Newcastle: Oriel Press Ltd.Google Scholar
Annison, E. F. & White, R. R. (1961). Biochem. J. 80, 162.CrossRefGoogle Scholar
Annison, E. F. & White, R. R. (1962). Biochem. J. 84, 546.CrossRefGoogle Scholar
Barcroft, J., McAnally, R. A. & Phillipson, A. T. (1944). J. exp. Biol. 20, 120.CrossRefGoogle Scholar
Barker, J. N. & Britton, H. G. (1957). J. Physiol., Lond. 138, 3P.Google Scholar
Cunningham, H. M. (1967). J. Anim. Sci. 26, 1332.CrossRefGoogle Scholar
Cunningham, H. M. & Friend, D. W. (1965). J. Anim. Sci. 24, 41.CrossRefGoogle Scholar
Depocas, F. (1962). Am. J. Physiol. 202, 1015.CrossRefGoogle Scholar
Elsden, S. R., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (19451946). J. exp. Biol. 22, 191.CrossRefGoogle Scholar
Eveleth, D. F. & Eveleth, M. W. (1935). J. biol. Chem. 111, 753.CrossRefGoogle Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Friend, D. W., Cunningham, H. M. & Nicholson, J. W. G. (1963). Can. J. Anim. Sci. 43, 174.CrossRefGoogle Scholar
Friend, D. W., Nicholson, J. W. G. & Cunningham, H. M. (1964). Can. J. Anim. Sci. 44, 303.CrossRefGoogle Scholar
Gutte, J. O., Kleiber, M., Raggi, F. R. & Black, A. L. (1961). Z. Tierphysiol. Tierernähr. Futtermittelk. 16, 171.CrossRefGoogle Scholar
Hanawalt, V. M., Link, R. P. & Sampson, J. (1947). Proc. Soc. exp. Biol. Med. 65, 41.CrossRefGoogle Scholar
Huggett, A., St, G. & Nixon, D. A. (1957). Biochem. J. 66, 12P.Google Scholar
Jones, G. B. (1965). Analyt. Biochem. 12, 249.CrossRefGoogle Scholar
Laurell, S. (1957). Acta physiol. scand. 41, 158.CrossRefGoogle Scholar
Linzell, J. L., Mepham, T. B., Annison, E. F. & West, C. E. (1969). Br. J. Nutr. 23, 319.CrossRefGoogle Scholar
Sampson, J. & Graham, R. (1943). J. Am. vet. med. Ass. 102, 176.Google Scholar
Shoemaker, W. C., Yanof, H. M., Turk, L. N. & Wilson, T. H. (1963). Gastroenterology 44, 654.CrossRefGoogle Scholar
Steele, R. (1966). Ergebn. Physiol. 57, 91.CrossRefGoogle Scholar
Steele, R., Altszuler, N., Wall, J. S., Dunn, A. & de Bodo, R. C. (1959). Am. J. Physiol. 196, 221.CrossRefGoogle Scholar
West, C. E. & Passey, R. F. (1967). Biochem. J. 102, 58.CrossRefGoogle Scholar
West, C. E. & Rowbotham, T. R. (1967). J. Chromat. 30, 62.CrossRefGoogle Scholar
Young, D. R., Pelligra, R., Shapira, J., Adachi, R. R. & Skrettingland, K. (1967). J. appl. Physiol. 23, 734.CrossRefGoogle Scholar