Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T12:40:24.022Z Has data issue: false hasContentIssue false

Metabolic utilization of dietary energy and nutrients for maintenance energy requirements in sows: basis for a net energy system

Published online by Cambridge University Press:  09 March 2007

J. Noblet
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches Porcines, 35590 St Gilles, France
X. S. Shi
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches Porcines, 35590 St Gilles, France
S. Dubois
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches Porcines, 35590 St Gilles, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Digestible energy (DE), metabolizable energy (ME) and net energy for maintenance (NEm) values of a set of fourteen diets were measured in six adult sows fed at and below their maintenance energy level. The efficiency of ME for NEm was estimated from heat production (HP) measurements (indirect calorimetry) at these different feeding levels. HP was partitioned between HP due to physical activity, thermic effect of food (TEF) and fasting heat production (FHP). The amounts of DE digested in the small intestine or in the hindgut were measured. Equations for prediction of NEm from dietary characteristics were calculated. HP at maintenance level averaged 400 kJ/kg body-weight0.75, 16 and 19% of the total being due to physical activity and TEF respectively. The efficiency of ME for NEm averaged 77·4% with higher values for digestible diethyl ether extract (100%) and starch + sugar (82 %). The efficiencies of digestible crude protein (N × 6·25) and digestible residue averaged 69 and 56 % respectively. The energy absorbed from the small intestine was used more efficiently than the energy fermented in the hindgut (82 v. 59%). These values are comparable with those obtained in growing pigs. The NEm content of diets can be predicted accurately from equations including DE (or ME) values and some dietary chemical characteristics.

Type
Energy Metabolism
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Agricultural Research Council (1981). The Nutrient Requirements of Pigs. Slough: Commonwealth Agriculture Bureaux.Google Scholar
Armstrong, D. G. (1969). Cell bioenergetics and energy metabolism. In Handbuch der Tierernuhrung, pp. 385414 [Lenkeit, W., K., Breirem and Craseman, E., editors]. Hamburg und Berlin: Verlag P. Parey.Google Scholar
Association of Official Agricultural Chemists (1975). Ofticial Methods of Analysis, 12th ed. Washington, DC: AOAC.Google Scholar
Breirem, K. (1939). Der energieumsatz bei den schweinen (Energy utilization in pigs). Tierernuhrung 11, 487528.Google Scholar
Brouwer, E. (1965). Report of sub-committee on constants and factors. In Energy Metabolism. European Association of Animal Production Publicationno. 11, pp. 441443 [Blaxter, K. L., editor]. London: Academic Press.Google Scholar
Carre, B. & Brillouet, J. M. (1989). Determination of water-insoluble cell walls in feeds. Interlaboratory study. Journal of the Association of Oficial Analytical Chemists 72, 463467.Google ScholarPubMed
Close, W. H. & Mount, L. E. (1975). The rate of heat loss during fasting in the growing pig. British Journal of Nutrition 34, 279290.Google ScholarPubMed
Close, W. H., Noblet, J. & Heavens, R. P. (1985). Studies on energy metabolism of the pregnant sow. 2. The partition and utilization of metabolizable energy intake in pregnant and non-pregnant animals. Brirish Journal of Nutrition 53, 267279.CrossRefGoogle ScholarPubMed
Dauncey, M. J. (1979). Energy metabolism in man and the influence of diet and temperature: a review. Journal of Human Nutrition 33, 259269.Google ScholarPubMed
Dauncey, M. J. & Bingham, S. A. (1983). Dependence of 24 h energy expenditure in man on the composition of the nutrient intake. British Journal of Nutrition 52, 429442.Google Scholar
EEC (1972). Analytical determination of starch. Oficial Journal of European Communities L123/7.Google Scholar
Golay, A., Schutz, Y., Broquet, C., Moeri, R., Felber, J. P. & Jcquier, E. (1983). Decreased thermogenic response to an oral glucose load in older subjects. Journal ofthe American Geriatrics Sociery 31, 144148.CrossRefGoogle Scholar
Hurni, M., Burnand, B., Pittet, Ph. & Jequier, E. (1982). Metabolic effects of a mixed and a high-carbohydrate low-fat diet in man, measured over 24 h in a respiration chamber. British Journal of Nutrition 47, 3343.CrossRefGoogle Scholar
INRA (1984). L'alimentation des animaux monogastripes (porc, lapin, volailles) (Feeding of non-ruminant livestock). Paris: INRA.Google Scholar
Just, A. (1982). The net energy value of balanced diets for growing pigs. Livestock Production Science 8, 541555.CrossRefGoogle Scholar
Kinabo, J. L. & Durnin, J. V. G. A. (1990). Thermic effect of food in man: effect of meal composition, and energy content. British Journal of Nutrition 64, 3744.CrossRefGoogle ScholarPubMed
Koong, L. J., Nienaber, J. A., Pekas, J. C. & Yen, J. T. (1982). Effects of plane of nutrition on organ size and fasting heat production in pigs. Journal of Nutrition 112, 16381642.CrossRefGoogle ScholarPubMed
Lin, P. Y., Romsos, D. R., Vander Tuig, J. G. & Leveille, G. A. (1979). Maintenance energy requirements, energy retention and heat production of young obese (ob/ob) and lean mice fed a high-fat or a high-carbohydrate diet. Journal of Nutrition 109, 11431153.CrossRefGoogle ScholarPubMed
Nair, K. S., Halliday, D. & Garrow, J. S. (1983). Thermic response to isoenergetic protein, carbohydrate or fat meals in lean and obese subjects. Clinical Science 65, 307312.CrossRefGoogle ScholarPubMed
Noblet, J., Dourmad, J. Y. & Etienne, M. (1990). Energy utilization in pregnant and lactating sows: Modeling of energy requirements. Journal of Animal Science 68, 562572.CrossRefGoogle ScholarPubMed
Noblet, J., Fortune, H., Dubois, S. & Henry, Y. (1989). Nouvelles bases d'estimation des teneurs énergie digestible, mitabolisable et nette des aliments pour le porc. (New approaches for estimating digestible, metabolizable and net energy values in pig feeds). Paris: INRA.Google Scholar
Noblet, J., Henry, Y. & Dubois, S. (1987). Effect of protein and lysine levels in the diet on body gain composition and energy utilization in growing pigs. Journal of Animal Science 65, 717726.CrossRefGoogle ScholarPubMed
Noblet, J. & Shi, X. S. (1993). Comparative digestibility of energy and nutrients in growing pigs fed ad libitum and adult sows fed at maintenance. Livestock Production Science 34, 137152.CrossRefGoogle Scholar
Noblet, J., Shi, X. S. & Dubois, S. (1993). Energy cost of standing activity in sows. Livesfock Production Science 34, 127136.CrossRefGoogle Scholar
Perez, J. M. (1991). Intérêt et limites des modèkles de prévision de la valeur énergetique des aliments destinés au porc (Interest and limits of models for prediction of the energy value of pig feeds). Thèse Doctorat, Université Montpellier 11.Google Scholar
SAS (1988). SAS User's Guide: Statistics.Cary, NC: SAS Inst.Google Scholar
Schiemann, R., Nehring, K., Hoffmann, L., Jentsch, W. & Chudy, A. (1972). Energetische Futterbewertung und Energienormen (Food energy evaluation and energy requirements). Berlin: VEB Deutscher Landwirtschaftsverlag.Google Scholar
Schutz, Y., Bessard, T. & Jequier, E. (1984). Diet-induced thermogenesis measured over a whole day in obese and nonobese women. American Journal of Clinical Nutrition 40, 542552.CrossRefGoogle Scholar
Shi, X. S. & Noblet, J. (1993). Contribution of the hindgut to digestion of diets in growing pigs and adult sows: effect of diet composition. Livestock Production Science (In the Press.).Google Scholar
Van Es, A. J. H., Vogt, J. E., Niessen, Ch., Veth, H., Rodenburg, L., Teeuwse, V. & Dhuyvetter, J. (1984). Human energy metabolism below, near and above energy equilibrium. British Journal of Nutrition 52, 429442.CrossRefGoogle ScholarPubMed
Van Soest, P. J. & Wine, R. H. (1967). Use of detergents in the analysis of fibrous feeds. Determination of plant cell-wall constituents. Journal of Association of OfJicialAnalytical Chemistry 50, 5055.Google Scholar
Vermorel, M., Bouvier, J. C., Binnet, M. & Fauconneau, G. (1973). Construction et fonctionnement de 2 chambres respiratoires de type circuit ouvert pour jeunes bovins (Construction and operation of two “open- circuit” respiration chambers for young cattle). Annales de Biologie Animale, Biochimie et Biophysique 13, 569581.CrossRefGoogle Scholar