Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T02:19:00.709Z Has data issue: false hasContentIssue false

Metabolic adaptation to a fat-supplemented diet by the thoroughbred horse

Published online by Cambridge University Press:  09 March 2007

Catherine E. Orme
Affiliation:
Department of Physiology, Animal Health Trust, PO Box 5, Newmarket CB8 7DW
Roger C. Harris
Affiliation:
Equine Sports Medicine Centre, Royal Veterinary College, North Mymms AL9 7TA
David J. Marlin
Affiliation:
Department of Physiology, Animal Health Trust, PO Box 5, Newmarket CB8 7DW
Jane Hurley
Affiliation:
Spillers Speciality Feeds, Dalgety Agriculture Ltd, Aztec West, Bristol
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Following 10 weeks of fat supplementation a group of aerobically trained thoroughbred horses exhibited a significant decrease in postprandial plasma triacylglycerol concentration. This decrease was associated with a mean 50% increase in plasma total lipase activity following pentosan polysulfate administration and an increase in postprandial plasma cholesterol concentration. A significant increase in the activity of muscle citrate synthase (EC 4.1.3.7), expressed as a ratio to the total fractional area occupied by type I and type IIa muscle fibres, was also observed. No significant change in the concentration of resting muscle glycogen or triacylglycerol occurred as a result of fat supplementation. These results suggest that there was improved management of the fat load and that the triacylglycerol-clearing capacity of the horses was increased as a result of fat supplementation. It is suggested that the increase in plasma total lipase activity following pentosan polysulfate administration may have reflected an increase in muscle lipoprotein lipase (EC 3.1.1.34) activity, which would increase the capacity of muscle for free fatty acid uptake from circulating triacylglycerol-rich plasma lipoproteins. Fat supplementation may also enhance the oxidative capacity of muscle, as suggested by the significant increase in muscle citrate synthase and the trend towards an increase in β-hydroxyacyl CoA dehydrogenase (EC 1.1.1.35) following 10 weeks of fat supplementation.

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Alp, P. R., Newsholme, E. A. & Zammit, V.A. (1976) Activities of citrate synthase and NAD linked and NADP linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochemical Journal 154, 689700.CrossRefGoogle ScholarPubMed
Apter, R. C., Vogelsang, M. M., Cartwright, A. L., Gibbs, P. G., Potter, G. D. & Smith, S. B. (1995). Serum cholesterol profiles in postpartum and early gestational mares fed a fat-supplemented diet. In Proceedings of the 14th Equine Nutrition and Physiology Symposium, Ontario, California (1995), pp. 4449. Savoy, IL: Equine Nutrition and Physiology Society.Google Scholar
Barrowcliffe, T. W., Gray, E., Merton, R. E., Dawes, J., Jennings, C. A., Hubbard, A. R. & Thomas, D. P. (1986) Anticoagulant activities of pentosan polysulfate (hemoclar) due to release of hepatic triglyceride lipase. Thrombosis and Haemostasis 56, 202206.Google ScholarPubMed
Bergmeyer, H. U. (1986) Methods of Enzymatic Analysis Deerfield Beach, FL: Verlag Chem. International.Google Scholar
Bergstrom, J. (1962) Muscle electrolytes in man determined by npeutron activation analysis on needle biopsy specimens. A study on normal subjects, kidney patients and patients with chronic diarrhoea. Scandinavian Journal of Clinical Laboratory Investigation 14, 1110.Google Scholar
Borensztajn, J., Rone, M., Babirak, S. & Oscai, L. B. (1975) Effects of exercise on lipoprotein lipase activity in rat heart and skeletal muscle. American Journal of Physiology 229, 394397.CrossRefGoogle ScholarPubMed
Brooke, M. H. & Kaiser, K. K. (1970) Muscle fibre types: how many and what kind? Archives of Neurology 23, 369379.Google Scholar
Conlee, R. K., Hammer, R. L., Winder, W. W., Bracken, M. L., Nelson, A. G. & Barnett, D. W. (1990) Glycogen repletion and exercise endurance in rats adapted to a high fat diet. Metabolism 39, 289294.CrossRefGoogle ScholarPubMed
Costill, D. L., Coyle, E., Dalsky, G., Evans, W., Fink, W. & Hoopes, D. (1977) Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. Journal of Applied Physiology 43, 695699.CrossRefGoogle ScholarPubMed
Cryer, A. (1987). Comparative biochemistry and physiology of lipoprotein lipase. In Lipoprotein Lipase, pp. 277327 [Borensztajn, J. editor]. Chicago, IL: Evener Publishers Inc.Google Scholar
Delorme, L. C. W. & Harris, K. L. (1975) Effects of diet on lipoprotein lipase activity in the rat. Journal of Nutrition 105, 447451.CrossRefGoogle ScholarPubMed
Duren, S. E., Jackson, S. G., Baker, J. P. & Aaron, D. K. (1987). Effect of dietary fat on blood parameters in exercised thoroughbred horses. In Equine Exercise Physiology: Proceedings of the Second International Conference, San Diego (1986), pp. 674685 [Gillespie, J.R. and Robinson, N. E., editors]. Davis, CA: ICEEP Publications.Google Scholar
Essen, B. & Henriksson, J. (1974) Glycogen content of individual muscle fibres in man. Acta Physiologica Scandinavica 90, 645647.CrossRefGoogle ScholarPubMed
Fischer, A. M., Barrowcliffe, T. W. & Thomas, D. P. (1982 a) A comparison of pentosan polysulfate (SP 54) and heparin I: mechanism of action on blood coagulation. Thrombosis and Haemostasis 47, 104108.Google ScholarPubMed
Fischer, A. M., Merton, N. A., Williams, S., Gaffney, P. J., Barrowcliffe, T. W. & Thomas, D. P. (1982 b) A comparison of pentosan polysulfate (SP 54) and heparin II: effects of subcutaneous injection. Thrombosis and Haemostasis 47, 109113.Google ScholarPubMed
Greiwe, K. M., Meacham, T. N., Fregin, G. F. & Walberg, J. L. (1989). Effect of added dietary fat on exercising horses. In Proceedings of the 11th Equine Nutrition and Physiology Symposium, Oklahoma State University (1989), pp. 101106. Savoy, IL: Equine Nutrition and Physiology Society.Google Scholar
Hambleton, P. L., Slade, L. M., Hamar, D. W., Kienholz, E. W. & Lewis, L. D. (1980) Dietary fat and exercise conditioning, effect on metabolic parameters in the horse. Journal of Animal Sciences 51, 13301338.CrossRefGoogle ScholarPubMed
Hammell, E. P., Kronfeld, D. S., Ganjam, V. K. & Dunlap, H. L. (1977) Metabolic responses to exhaustive exercise in racing sledge dogs fed diets containing medium, low or zero carbohydrate. American Journal of Clinical Nutrition 30, 409418.CrossRefGoogle Scholar
Harkins, J. D., Morris, G. S., Tulley, R. T., Nelson, A. G. & Kamerling, S. G. (1992) Effect of added dietary fat on racing performance in thoroughbred horses. Journal of Equine Veterinary Science 12, 123129.CrossRefGoogle Scholar
Harris, K. L. & Felts, J. M. (1973) Kinetics of chylomicron triglyceride removal from plasma in rats: the effect of diet. Biochimica et Biophysica Acta 316, 288295.CrossRefGoogle ScholarPubMed
Hickson, R. C., Rennie, M. J., Conlee, R. K., Winder, W. W. & Holloszy, J. O. (1977) Effects of increased plasma fatty acids on glycogen utilization and endurance. Journal of Applied Physiology 43, 829833.CrossRefGoogle ScholarPubMed
Hill, R., Webster, W. W., Linazasoro, M. J. & Chaikoff, I. L. (1960) Time occurrence of changes in the liver's capacity to utilize acetate for fatty acid and cholesterol synthesis after fat feeding. Journal of Lipid Research 1, 19501953.CrossRefGoogle Scholar
Hintz, H. F., Ross, M. W., Lesser, F. R., Leids, P. F., White, K. K., Lowe, J. E., Short, C. E. & Schryver, H. F. (1987). The value of dietary fat for working horses I: biochemical and hematological evaluations. In Proceedings of the 10th Equine Nutrition and Physiology Symposium, Colorado State University (1987), pp. 483488. Savoy, IL: Equine Nutrition and Physiology Society.Google Scholar
Hodgson, D. R., Eaton, M. D., Evans, D. L. & Rose, R. J. (1995). Effect of a high fat diet on muscle glycogen concentration and capacity for high intensity exercise. Equine Veterinary Journal 18, Suppl., 353356.Google Scholar
Hollands, T. & Cuddeford, D. (1992). Effect of supplementary soya oil on the digestibility of nutrients contained in a 40:60 roughage/concentrate diet fed to horses. Pferdeheilkunde 8, Suppl., 128132.Google Scholar
Jacobs, I., Lithell, H. & Karlsson, J. (1982) Dietary effects on glycogen and lipoprotein lipase activity in skeletal muscle in man. Acta Physiologica Scandinavica 115, 8590.CrossRefGoogle ScholarPubMed
Jansen, H., Tol, A. V. & Hulsmann, W. C. (1980) On the metabolic function of heparin-releasable liver lipase. Biochemical and Biophysical Research Communications 92, 5359.CrossRefGoogle ScholarPubMed
Kiens, B., Essen-Gustavsson, B., Gad, P. & Lithell, H. (1987) Lipoprotein lipase activity and intramuscular triglyceride stores after long term high fat and high carbohydrate diets in physically trained men. Clinical Physiology 7, 19.CrossRefGoogle ScholarPubMed
Kiens, B. & Lithell, H. (1989) Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. Journal of Clinical Investigation 83, 558564.CrossRefGoogle ScholarPubMed
Lambert, E. V., Speechly, D. P., Dennis, S. C. & Noakes, T. D. (1994) Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. European Journal of Physiology 69, 287293.Google ScholarPubMed
Lentner, C. (1981) Units of Measurement, Body Fluids, Composition of the Body, Nutrition. Basel: Ciba-Geigy Ltd.Google Scholar
Lithell, H., Boberg, J., Hellsing, K., Lundqvist, G. & Vessby, B. (1978) Lipoprotein lipase activity in human skeletal muscle and adipose tissue in the fasting and fed states. Atherosclerosis 30, 8991.CrossRefGoogle ScholarPubMed
Meyers, M. C., Potter, G. D., Evans, J. W., Greene, L. W. & Crouse, S. F. (1989) Physiologic and metabolic response of exercising horses to added dietary fat. Journal of Equine Veterinary Science 9, 218223.CrossRefGoogle Scholar
Miller, W. C., Bryce, G. R. & Conlee, R. K. (1984) Adaptions to a high fat diet that increase exercise endurance in male rats. Journal of Applied Physiology 56, 7883.CrossRefGoogle ScholarPubMed
Oldham, S. L., Potter, G. D., Evans, J. W., Smith, S. B., Taylor, T. S. & Barnes, W. S. (1990) Storage and mobilization of muscle glycogen in exercising horses fed a fat-supplemented diet. Journal of Equine Veterinary Science 10, 353359.CrossRefGoogle Scholar
Orme, C. E., Harris, R. C. & Marlin, D. J. (1995). Effect of elevated plasma FFA on fat utilization during low intensity exercise. Equine Veterinary Journal 18, Suppl., 199204.CrossRefGoogle Scholar
Pagan, J. D., Burger, I. & Jackson, S. G. (1995). The long term effects of feeding fat to 2 year old thoroughbreds in training. Equine Veterinary Journal 18, Suppl., 343348.CrossRefGoogle Scholar
Pagan, J. D., Essen-Gustavsson, B., Lindholm, A. & Thornton, J. (1987). The effect of dietary energy source on exercise performance in standardbred horses. In Equine Exercise Physiology: Proceedings of the Second International Conference, San Diego (1986), pp. 686700 [Gillespie, J.R. and Robinson, N. E., editors]. Davis, CA: ICEEP Publications.Google Scholar
Phinney, S. D., Bistrian, B. R., Evans, W. J., Gervino, E. & Blackburn, G. L. (1983) The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 32, 769776.CrossRefGoogle ScholarPubMed
Ravussin, E., Bogardus, C., Scheidegger, K., Grange, B. L., Horton, E. H. & Horton, E. S. (1986) Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans. Journal of Applied Physiology 60, 893900.CrossRefGoogle ScholarPubMed
Renuka-Prasad, M., Jones, R. M., Young, H. S., Kaplinksy, L. B. & Das, D. K. (1988) Analysis of tissue free fatty acids isolated by aminopropyl bonded-phase columns. Journal of Chromatography 428, 221228.CrossRefGoogle Scholar
Robinson, D. S. (1987). Lipoprotein lipase-past, present and future. In Lipoprotein Lipase, pp. 113 [J. Borensztajn, editor]. Chicago, IL: Evener Publishers Inc.Google Scholar
Rudney, H. & Sexton, C. R. (1986) Regulation of cholesterol biosynthesis. Annual Review of Nutrition 6, 245272.CrossRefGoogle ScholarPubMed
Scott, B. D., Potter, G. D., Greene, L. W., Hargis, P. S. & Anderson, J. G. (1992) Efficacy of a fat-supplemented diet on muscle glycogen concentrations in exercising thoroughbred horses maintained in varying body conditions. Journal of Equine Veterinary Science 12, 109113.CrossRefGoogle Scholar
Simi, B., Sempore, B., Meyet, M. & Favier, R. (1991) Additive effects of training and high fat diet on energy metabolism during exercise. Journal of Applied Physiology 71, 197203.CrossRefGoogle ScholarPubMed
Snow, D. H. & Guy, P. S. (1976) Percutaneous needle muscle biopsy in the horse. Equine Veterinary Journal 8, 150155.CrossRefGoogle ScholarPubMed
Snow, D. H. & Harris, R. C. (1991). Effect of daily exercise on muscle glycogen in the thoroughbred racehorse. In Equine Exercise Physiology: Proceedings of the Third International Conference, Uppsala (1990), pp. 299304 [Persson, S.G. B., Lindholm, A. and Jeffcott, L. B., editors]. Davis, CA: ICEEP Publications.Google Scholar
Stull, C. L., Rodiek, A. V. & Arana, M. J. (1987). The effects of common equine feeds on blood levels of glucose, insulin and cortisol. In Proceedings of the 10th Equine Nutrition and Physiology Symposium, Colorado State University (1987), pp. 6166. Savoy, IL: Equine Nutrition and Physiology Society.Google Scholar
Summerfield, J. A., Bowden, D. A. & Hazzard, W. R. (1984) Effects of diet and age on lipoprotein lipase and hepatic triglyceride lipase activities in the rat. Proceedings of the Society for Experimental Biology and Medicine 75, 158163.CrossRefGoogle Scholar
Taskinen, M. R., Nikkila, E. A., Rehunen, B. & Gordin, A. (1980) Effect of acute vigorous exercise on lipoprotein lipase activity of adipose tissue and skeletal muscle in physically active man. Artery 6, 471483.Google Scholar
Van Zuiden, P. E., Erickson, S. K. & Cooper, A. D. (1983) Effect of removal of lipoproteins of different composition on hepatic 3-hydroxy-3-methylglutaryl co-enzyme A reductase activity and hepatic very low density lipoprotein secretion. Journal of Lipid Research 24, 14621468.CrossRefGoogle Scholar
Watson, T. D. G., Burns, L., Love, S., Packard, C. J. & Shepherd, J. (1991) The isolation, characterization and quantitation of the equine plasma lipoproteins. Equine Veterinary Journal 23, 353359.CrossRefGoogle Scholar
Watson, T. D. G., Burns, L., Packard, C. J. & Shepherd, J. (1992) Selective measurement of lipoprotein lipase and hepatic lipase in heparinized plasma from horses. American Journal of Veterinary Research 53, 771775.CrossRefGoogle ScholarPubMed
Watson, T. D. G., Burns, L., Packard, C. J. & Shepherd, J. (1993 a) Effects of pregnancy and lactation on plasma lipid and lipoprotein concentrations, lipoprotein composition and post-heparin lipase activities in Shetland pony mares. Journal of Reproduction and Fertility 97, 563568.CrossRefGoogle ScholarPubMed
Watson, T. D. G., Packard, C. J. & Shepherd, J. (1993 b). Plasma lipid transport in the horse (Equus-caballus). Comparative Biochemistry and Physiology 106, 2734.Google ScholarPubMed
White, M. G. & Snow, D. H. (1987) Quantitative histochemical study of glycogen depletion in the maximally exercised thoroughbred. Equine Veterinary Journal 19, 6769.CrossRefGoogle ScholarPubMed
Wilmore, J. H. & Costill, D. L. (1994) Physiology of Sport and Exercise. Champaign, IL: Human Kinetics.Google Scholar