Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T09:55:01.034Z Has data issue: false hasContentIssue false

Mechanisms of heat damage in proteins

2.* Chemical changes in pure proteins

Published online by Cambridge University Press:  09 March 2007

J. Bjarnason
Affiliation:
Department of Agricultural Science and Applied Biology, University of Cambridge
K. J. Carpenter
Affiliation:
Department of Agricultural Science and Applied Biology, University of Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Bovine plasma albumin (BPA) containing approximately 14% moisture, when heated for 27 h at 115° suffered an appreciable loss of cystine and a small loss of lysine; at 145° all the amino acids except glutamic acid and those with paraffin side-chains, showed considerable losses. Isoleucine also showed some loss through racemization to alloisoleucine.

2. BPA heated at 115° evolved H2S; at 145° other sulphur compounds were released as well, all coming from the breakdown of cystine. Possible mechanisms for this are discussed.

3. Ammonia was also liberated from BPA heated at 115°. The degree of correlation of lysine binding in different proteins with ammonia liberation and amide changes has led us to suggest that the main reaction of ε-amino lysine groups is with amide groups of asparagine and glutamine. Reaction of ε-amino groups with carboxylic groups is thought to be less important.

4. Model experiments have shown that a reaction between amide groups and the e-amino group of lysine in proteins can occur at practical drying temperatures.

5. Reactions of the ε-amino group of lysine with destruction products of cystine is also considered to be partially responsible for the lysine binding in heated proteins.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

Association of Official Agricultural Chemists (1965). Official Methods of Analysis, 10th ed. Washington, D.C.: Association of Official Agricultural Chemists.Google Scholar
Bjarnason, J. & Carpenter, K. J. (1969). Br. J. Nutr. 23, 859.CrossRefGoogle Scholar
Bohak, Z. (1964). J. biol. Chem. 239, 2878.CrossRefGoogle Scholar
Bujard, E., Handwerck, V. & Mauron, J. (1967). J. Sci. Fd Agric., 18, 52.CrossRefGoogle Scholar
Carpenter, K. J., Ellinger, G. M., Munro, M. I. & Rolfe, E. J. (1957). Br. J. Nutr. 11, 162.CrossRefGoogle Scholar
Carpenter, K. J., Morgan, C. B., Lea, C. H. & Parr, L. J. (1962). Br. J. Nutr. 16, 451.CrossRefGoogle Scholar
Connell, J. J. (1958). Conference on Fundamental Aspects of the Dehydration of Foodstuffs, Aberdeen, p. 167, London: Society of Chemical Industry.Google Scholar
Edsall, J. T. (1954). J. Polymer Sci. 12, 253.CrossRefGoogle Scholar
Erbersdobler, H., Dümmer, H. & Zucker, H. (1969). Z. Tierphysiol. Tierernähr. Futtermittelk. 24, 3.Google Scholar
Ford, J. E. & Salter, D. N. (1966). Br. J. Nutr. 20, 843.CrossRefGoogle Scholar
Fraenkel-Conrat, H., Harris, J. I. & Levy, A. L. (1955). Meth. biochem. Analysis 2, 359.CrossRefGoogle Scholar
Gordon, W. G. & Ziegler, J. (1955). Archs Biochem. Biophys. 57, 80.CrossRefGoogle Scholar
Hamilton, L. D. G. (1960). In A Laboratory Manual of Analytical Methods for Protein Chemistry. Vol. 2, p. 72 [Alexander, P. and Block, R. J., editors]. Oxford, London, New York and Paris: Pergamon Press.Google Scholar
Lea, C. H., Parr, L. J. & Carpenter, K. J. (1960). Br. J. Nutr. 14, 91.CrossRefGoogle Scholar
Lewis, J. C., Snell, N. S., Hirschmann, D. J. & Fraenkel-Conrat, H. (1950). J. biol. Chem. 186, 23.CrossRefGoogle Scholar
Marbach, E. P., & Doty, D. M. (1956). J. agric. Fd Chem. 4, 881.CrossRefGoogle Scholar
Matacić, S. & Loewy, A. C. (1968). Biochem. biophys. Res. Comm. 30, 356.CrossRefGoogle Scholar
Mecham, D. K. & Olcott, H. S. (1947). Ind. Engng Chem. 39, 1023.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J. & Milner, C. K. (1965). Br. J. Nutr. 19, 547.CrossRefGoogle Scholar
Miller, E. L., Hartley, A. W. & Thomas, D. C. (1965). Br. J. Nutr. 19, 565.CrossRefGoogle Scholar
Patchornik, A., Sokolovsky, M. & Sadeh, T. (1961). Proc. int. Congr. Biochem. v. Moscow Vol. 9, Abstracts, p. 69.Google Scholar
Piez, K. A. (1954). J. biol. Chem. 207, 77.CrossRefGoogle Scholar
Pisano, J. J., Finlayson, J. S. & Peyton, M. P. (1968). Science, N.Y. 160, 892.CrossRefGoogle Scholar
Porter, R. R. & Sanger, F. (1948). Biochem. J. 42, 287.CrossRefGoogle Scholar
Riniker, B., Brunner, H. & Schwyzer, R. (1962). Angew. Chem. 74, 469.CrossRefGoogle Scholar
Roach, A. G., Sanderson, P. & Williams, D. R. (1967). J. Sci. Fd Agric. 18, 274.CrossRefGoogle Scholar
Roubal, W. T. & Tappel, A. L. (1966). Archs Biochem. Biophys. 113, 5.CrossRefGoogle Scholar
Schöberl, A. (1933). Justus Liebigs Annln Chem. 507, 111.CrossRefGoogle Scholar
Schöberl, A. (1941). Chem. Ber. 74B, 1225.CrossRefGoogle Scholar
Schöberl, A. & Eck, H. (1936). Justus Liebigs Annln Chem. 522, 97.CrossRefGoogle Scholar
Schröder, W. & Lübke, K. (1965 a). The Peptides. Vol. 1, p. 201. New York and London: Academic Press.Google Scholar
Schröder, W. & Lübke, K. (1965 b). The Peptides. Vol. 1, p. 227. New York and London: Academic Press.Google Scholar
Smyth, D. G., Stein, W. H. & Moore, S. (1962). J. biol. Chem. 237, 1845.CrossRefGoogle Scholar
Snow, N. S. (1962). Biochem. J. 84, 360.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1190.CrossRefGoogle Scholar
Stein, W. H. & Moore, S. (1949). J. biol. Chem. 178, 79.CrossRefGoogle Scholar
Thompson, E. O. P. (1954). J. biol. Chem. 208, 565.CrossRefGoogle Scholar
Wallace, G. M. & Alyar, K. R. (1969). J. Dairy Res. 36, 115.CrossRefGoogle Scholar
Weidner, K. & Eggum, B. O. (1966). Acta agric. scand. 16, 115.CrossRefGoogle Scholar
Weil, L. & Seibles, T. S. (1961). Archs Biochem. Biophys. 93, 193.CrossRefGoogle Scholar
Ziegler, K.,Melchert, I. & Lüurken, C. (1967). Nature, Lond. 214, 404.CrossRefGoogle Scholar