Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T02:28:11.206Z Has data issue: false hasContentIssue false

Measurement of zinc flux through plasma in normal and endotoxin-stressed pigs and the effects of Zn supplementation during stress

Published online by Cambridge University Press:  09 March 2007

J. K. Chesters
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Marie Will
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The rates of transport of zinc through plasma have been investigated in normal and endotoxin-stressed pigs.

2. 65Zn added to porcine plasma in vitro rapidly equilibrated with the Zn originally present.

3. 65Zn bound to albumin and injected intravascularly into pigs rapidly equilibrated with two kinetically distinguishable pools. The first of these pools was mainly associated with the plasma but was significantly larger than the plasma volume and substantially so in Zn-deficient pigs. The second pool appeared to represent a summation of the rapidly-exchangeable Zn within the extravascular tissues.

4. In non-stressed animals, the flux of Zn from the plasma of Zn-deficient pigs was only half that in Zn-supplemented animals.

5. Administration of endotoxin reduced the plasma Zn concentration of Zn-supplemented pigs but not of Zn-deficient animals. The fractional turnover rates of Zn were not altered in either of the two pools following endotoxin.

6. At 10 h after giving endotoxin neither the Zn content of the two pools nor the flux of Zn through them differed significantly between Zn-deficient and control pigs.

7. Intravascular infusion of Zn at a rate which essentially prevented the usual depression in plasma Zn concentration following endotoxin failed to alleviate the effects of endotoxin on Zn-supplemented pigs.

8. The reduction in plasma Zn concentration following endotoxin stress appears to be a normal physiological response which is not indicative of an increased metabolic requirement for Zn.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Adham, N. F., Song, M. K. & Rinderknecht, H. (1977). Biochim. biophys. Acta 495, 212.CrossRefGoogle Scholar
Bullen, J. J., Rogers, H. J. & Griffiths, E. (1978). Curr. Topics Microbiol. Immunol. 80, 1.Google Scholar
Burns, R. R. & Fell, G. S. (1976). Scott. med. J. 21, 153.CrossRefGoogle Scholar
Chesters, J. K. & Will, M. (1978). Br. J. Nutr. 39, 297.CrossRefGoogle Scholar
Chesters, J. K. & Will, M. (1981). Br. J. Nutr. 46, 111.CrossRefGoogle Scholar
Corrigall, W., Dalgarno, A. C., Ewen, L. A. & Williams, R. B. (1976). Vet. Rec. 99, 396.CrossRefGoogle Scholar
Giroux, E. L. (1975). Biochem. Med. 12, 258.CrossRefGoogle Scholar
Hallbook, T. & Hedelin, H. (1977). Br. J. Surg. 64, 271.CrossRefGoogle Scholar
Hallbook, T. & Hedelin, H. (1978). Acta Chir. scand. 144, 63.Google Scholar
Hambidge, K. M. & Droegemueller, W. (1974). Obstet. Gynec. N. Y. 44, 666.Google Scholar
Kumar, S. (1976). Nutr. Rep. int. 13, 33.Google Scholar
Parisi, A. F. & Vallee, B. L. (1970). Biochemistry, N. Y. 9, 2421.CrossRefGoogle Scholar
Pekarek, R. S. & Beisel, W. R. (1969). Appl. Microbiol. 18, 482.CrossRefGoogle Scholar
Pekarek, R. S., Burghen, G. A., Bartelloni, P. J., Calia, F. M., Bostian, K. A. & Beisel, W. R. (1970). J. Lab. clin. Med. 76, 293.Google Scholar
Scott, D. & McIntosh, G. H. (1975). Q. Jl exp. Physiol. 60, 131.CrossRefGoogle Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for in vivo Kinetics, New York and London: Academic Press.Google Scholar
Snyder, S. L. & Walker, R. I. (1976). Infect. Immunol. 13, 998.CrossRefGoogle Scholar
Sobocinski, P. Z., Canterbury, W. J. & Powanda, M. C. (1977). Proc. Soc. exp. Biol. Med. 156, 334.CrossRefGoogle Scholar
Sobocinski, P. Z., Powanda, M. C., Canterbury, W. J., Machotka, S. V., Walker, R. L. & Snyder, S. L. (1977). Infect. Immunol. 15, 950.CrossRefGoogle Scholar
Song, M. K. & Adham, N. F. (1979). Clinica chim. Acta 99, 13.CrossRefGoogle Scholar
Thompson, H. J., Griminger, P. & Evans, J. L. (1976). J. Nutr. 106, 1421.CrossRefGoogle Scholar
Utili, R., Abernathy, C. O. & Zimmerman, H. J. (1977). Life Sci. 20, 553.CrossRefGoogle Scholar
Vikbladh, I. (1951). Scand. J. clin. Invest. Suppl. 2.Google Scholar
Weinberg, E. D. (1974). In Trace Element Metabolism in Animals-2, p. 241 [Hoekstra, W. G., Suttie, J. W., Ganther, H. E. and Mertz, W., editors]. Baltimore, Maryland: University Park Press.Google Scholar
Weinberg, E. D. (1978). Microbiol. Rev. 42, 45.CrossRefGoogle Scholar
Whitenack, D. L., Whitehair, C. K. & Miller, E. R. (1978). Am. J. vet. Res. 39, 1447.Google Scholar