Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T06:29:05.836Z Has data issue: false hasContentIssue false

The measurement of production rates of volatile fatty acids in the caecum of the conscious rabbit

Published online by Cambridge University Press:  09 March 2007

D. S. Parker
Affiliation:
Department of Physiology and Biochemistry, University of Reading, Whiteknights, Reading RG6 2AJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The decrease in specific radioactivity of individual volatile fatty acids (VFA) after a single injection of tracer was monitored. The results obtained indicated the occurrence of a first-order process.

2. Regression analysis indicated the high flux of VFA through the caecal pool, equivalent to 30% of the maintenance energy requirement of the animal.

3. Interconversion of VFA was monitored, and results indicated substantial synthesis of butyric acid from acetic acid.

4. Results were obtained from animals on two dietary regimens, and these were compared with results reported for other species.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Allo, A. A., Oh, J. H., Longhurst, W. M. & Connolly, G. E. (1973). J. Wildl. Mgmt 37, 202.CrossRefGoogle Scholar
Annison, E. F. (1972). In Isotope Studies on the Physiology of Domestic Animals, p. 261 [Guillon, A., editor]. Vienna: International Atomic Energy Agency.Google Scholar
Bergman, E. N., Reid, R. S., Murray, M. G., Brockway, J. M. & Whitelaw, F. G. (1965). Biochem. J. 97, 53.Google Scholar
Clancey, M. J. & Wilson, R. K. (1966). Proc. 10th int. Grassld Congr. p. 445.Google Scholar
Elsden, S. R., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (1946). J. exp. Biol. 22, 191.CrossRefGoogle Scholar
Faichney, G. J. (1969). Aust. J. agric. Res. 20, 491.CrossRefGoogle Scholar
Gray, F. V., Jones, G. B. & Pilgrim, A. F. (1960). Aust. J. agric. Res. 11, 383.CrossRefGoogle Scholar
Hall, E. R. (1952). J. gen. Microbiol. 7, 350.Google Scholar
Henning, S. J. & Hird, F. J. R. (1972). Biochem. J. 130, 785.CrossRefGoogle Scholar
Hoover, W. H. & Heitmann, R. N. (1972). J. Nutr. 102, 375.CrossRefGoogle Scholar
Johnson, J. L. & McBee, R. H. (1967). J. Nutr. 91, 540.CrossRefGoogle Scholar
Knox, K. L., Black, A. L. & Kleiber, M. (1967). J. Dairy Sci. 50, 1716.CrossRefGoogle Scholar
Leng, R. A. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 406 [Phillipson, A. T. editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
McMillan, R. T., Edwards, N. A. & Parker, D. S. (1975). Proc. Nutr. Soc. 34, 21A.Google Scholar
Parker, D. S. & McMillan, R. T. (1976). Br. J. Nutr. 35, 365.CrossRefGoogle Scholar
Pickard, D. W. & Stevens, C. E. (1972). Am. J. Physiol. 222, 1161.CrossRefGoogle Scholar
Williams Smith, H. (1965). J. Path. Bact. 89, 95.CrossRefGoogle Scholar
Yang, M. G., Manoharan, K. & Mickelsen, O. (1970). J. Nutr. 100, 545.Google Scholar