Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T00:48:18.675Z Has data issue: false hasContentIssue false

Mammalian small intestinal phytase (EC 3.1.3.8)

Published online by Cambridge University Press:  24 July 2007

John R. Cooper
Affiliation:
National Radiological Protection Board, Chilton, Didcot, Oxon OX11 0RQ
Helen S. Gowing
Affiliation:
National Radiological Protection Board, Chilton, Didcot, Oxon OX11 0RQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Phytase (EC 3.1.3.8) concentration has been measured in the small intestineof rat, rabbit, guinea-pig and hamster. Levels varied from 0·12 units (μg phosphorus released/min)/mg protein in the rat to 0·03 units/mg protein in the rabbit.

2. The enzyme is localized in the brush border of the small intestine of the rat.

3. It is suggested that the levels and location of phytase are an important factor inthe uptake of metals from metal–phytate complexes. Metal ions released in the immediate vicinity of the absorptive surface of the intestine could be absorbed before being rendered insoluble by competing reactions such as hydrolysis.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1983

References

Bitar, K. & Reinhold, J. G. (1972). Biochimica et Biophysica Acta 268, 442452.CrossRefGoogle Scholar
Burton, K. (1956).Biochemical Journal 62, 315323.CrossRefGoogle Scholar
Canals, E., Mariynan, R. & Cordier, S. (1954). Bulletin de la Société de Chimie Biologique 36, 10151020.Google Scholar
Chambers, J. A. A. & Rickwood, D. (1978). In Centrifugation: a Practical Approach, pp. 3346 [Rickwood, D., editor]. London: Information Retrieval Ltd.Google Scholar
Cheryan, M. (1980). CRC Critical Reviews in Food Science and Nutrition 13, 297335.CrossRefGoogle Scholar
Cooper, J. R. & Gowing, H. S. (1983). Analytical Biochemistry (In the Press.)Google Scholar
Cooper, J. R. & Harrison, J. D. (1982). Health Physics, 43, 913918.Google Scholar
Cosgrove, D. J. (1980). Journal of the Science of Food and Agriculture 31, 12531256.CrossRefGoogle Scholar
Davies, N. T. & Flett, A. A. (1978). British Journal of Nutrition 39, 307316.CrossRefGoogle Scholar
Dodgson, K. S., & Spencer, B. (1957). Methods of Biochemical Analysis 4, 211255.CrossRefGoogle Scholar
Forstner, G. G., Sabesin, S. M. & Isselbacher, K. J. (1968). Biochemical Journal 106, 381390.CrossRefGoogle Scholar
Gillis, M. B., Keane, K. W. & Collins, R. A. (1957). Journal of Nutrition 62, 1326.CrossRefGoogle Scholar
Irving, G. C. J. (1980). In Inositol Phosphates, pp. 8596, [Cosgrove, D. J., editor]. Oxford: Elsevier.Google Scholar
Irving, G. C. J. & Cosgrove, D. J. (1970). Analytical Biochemistry 36, 381388.CrossRefGoogle Scholar
Layne, E. (1957). Methods in Enzymology 3, 447451.CrossRefGoogle Scholar
Maga, J. A. (1982). Journal of Agricultural and Food Chemistry 30, 19.CrossRefGoogle Scholar
Morris, E. R. & Ellis, R. (1976). Journal of Nutrition 106, 753760.CrossRefGoogle Scholar
Rackis, J. J. & Anderson, R. L. (1977). Food Product Development 11, 3844.Google Scholar
Roberts, A. H. & Yudkin, J. (1961). British Journal of Nutrition 15, 457–47.CrossRefGoogle Scholar
Schmitz, J. & Preiser, H. (1973). Biochimica et Biophysica Acta 323,98112.CrossRefGoogle Scholar
Vohra, P., Gray, G. A. & Kratzer, F. H. (1965). Proceedings of the Society for Experimental Biology and Medicine 120, 447449.CrossRefGoogle Scholar