Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T21:22:23.489Z Has data issue: false hasContentIssue false

Magnitude of ouabain-sensitive respiration in the liver of growing, lactating and starved sheep

Published online by Cambridge University Press:  09 March 2007

B. W. McBride
Affiliation:
Department of Animal Science, The University of Alberta, Edmonton, Alberta T6G 2P5, Canada
L. P. Milligan
Affiliation:
Department of Animal Science, The University of Alberta, Edmonton, Alberta T6G 2P5, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Oxygen consumption and ouabain-sensitive respiration was measured for liver biopsies from lactating and non-lactating ewes and for hepatocytes isolated from mature, dry ewes. O2 consumption, ouabain-sensitive respiration and 86Rb+ uptake were also measured for hepatocytes isolated from lambs, fed adult sheep and adult sheep starved for 5 d.

2. Ouabain-sensitive respiration in the liver of ewes at peak lactation accounted for 45% of the total liver O2 consumption. This percentage was 24–37% higher (P > 0.05) than measurements made during late lactation and during the non-lactating period.

3. Total O2 consumption and ouabain-sensitive respiration rates of lamb hepatocytes were greater ( P > 0.05) than similar measurements for hepatocytes isolated from adult sheep.

4. Ouabain-sensitive 86Rb+ uptake by hepatocytes from fed sheep was up to six times greater (P > 0.05) than that by cells from starved sheep.

5. The magnitude of ouabain-sensitive respiration of hepatocytes from starved sheep was 62% lower (P > 0.05) than that for hepatocytes from fed sheep.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Balaban, R. S., Soltoff, S., Storey, J. M. & Mandel, L. J. (1980). American Journal of Physiology 238, F50–F59.Google Scholar
Clark, D. G., Brinkman, H., Filsell, O. H., Lewis, S. J. & Berry, M. N. (1982). Biochemical Journal 202, 661665.CrossRefGoogle Scholar
Clark, M. G., Filsell, O. H. & Jarrett, I. G. (1976). Biochemical Journal 156, 671680.CrossRefGoogle Scholar
Dawson, R. M. C., Elliot, D. C., Elliot, W. H. & Jones, K. M. (1969). Data for Biochemical Research. Oxford: Clarendon Press.Google Scholar
Edelstone, D. I. & Holzman, I. R. (1981). American Journal of Physiology 240, G297–G304.Google Scholar
Glynn, I. M. & Karlish, S. J. D. (1975). Annual Review of Physiology 37, 1355.CrossRefGoogle Scholar
Gregg, V. A. & Milligan, L. P. (1982 a). Canadian Journal of Animal Science 62, 123132.CrossRefGoogle Scholar
Gregg, V. A. & Milligan, L. P. (1982 b). British Journal of Nutrition 48, 6571.CrossRefGoogle Scholar
Gregg, V. A. & Milligan, L. P. (1982 c). In Energy Metabolism of Farm Animals, pp. 6669. [Ekern, A. and Sundstøl, F., editors], European Association for Animal Production, publication no. 29. Lillehammer, Norway: Agricultural University of Norway.Google Scholar
Ismail-Beigi, F., Bissell, D. M. & Edelman, I. S. (1979). Journal of General Physiology 73, 369383.CrossRefGoogle Scholar
Kaplan, J. G. (1978). Annual Review of Physiology 40, 1941.CrossRefGoogle Scholar
Lautt, W. W. (1976). Journal of Applied Physiology 40, 269274.CrossRefGoogle Scholar
Lautt, W. W. (1977). American Journal of Physiology 232, H652–H656.Google Scholar
Liberman, U. A., Asano, Y., Lo, C–S. & Edelman, I. S. (1979). Biophysical Journal 27, 127144.CrossRefGoogle Scholar
Lin, M. H., Romos, D. R., Akera, T. & Leveille, G. A. (1979 a). Proceedings of the Society of Experimental Biology and Medicine 161, 235238.CrossRefGoogle Scholar
Lin, M. H., Vander Tuig, J. G., Romsos, D. R., Akera, T. & Leveille, G. A. (1977 b). American Journal of Physiology 237, E265–E272.Google Scholar
McBride, B. W. & Milligan, L. P. (1984). Canadian Journal of Animal Science 64, 817824.CrossRefGoogle Scholar
McBride, B. W. & Milligan, L. P. (1985). International Journal of Biochemistry 17, 4349.CrossRefGoogle Scholar
Mandel, L. J. & Balaban, R. S. (1981). American Journal of Physiology 240, F357–F371.Google Scholar
Milligan, L. P. (1971). Federation Proceedings 30, 14541458.Google Scholar
Mummery, C. L., Boonstra, J., Van Der Saag, P. T. & de Laat, S. W. (1981). Journal of Cellular Physiology 107, 19.CrossRefGoogle Scholar
Pearson, E. G. & Craig, A. M. (1980). Modern Veterinary Practice 62, 233237.Google Scholar
Rozengurt, E. & Mendoza, S. A. (1980). Annals of the New York Academy of Science 339, 175190.CrossRefGoogle Scholar
Seglen, P. O. (1976). Methods in Cell Biology 13, 2983.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Principles and Procedures of Statistics. New York: McGraw-Hill, Inc.Google Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1964). Manometric Techniques, p. 5. Minneapolis: Burgess publishing co.Google Scholar
Vandenburgh, H. H. & Kaufman, S. (1981). Journal of Cellular Physiology 109, 205214.CrossRefGoogle Scholar
Van Dyke, R. W., Golan, T. L. & Scharschmidt, B. F. (1983). American Journal of Physiology 244, G523–G531.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North Holland.Google Scholar
Webster, A. J. F. (1981). Proceedings of the Nutrition Society 40, 121128.CrossRefGoogle Scholar
Young, B. A., Kerrigan, B. & Christopherson, R. J. (1975). Canadian Journal of Animal Science 55, 1722.CrossRefGoogle Scholar