Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T13:35:33.709Z Has data issue: false hasContentIssue false

Long-term vitamin status and dietary intake of healthy elderly subjects

2. Vitamin C

Published online by Cambridge University Press:  09 March 2007

C. J. Bates
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge
Ingrid H. E. Rutishauser
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge
Alison E. Black
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge
Alison A. Paul
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge
A. R. Mandal
Affiliation:
Department of Geriatric Medicine, Sunderland General Hospital, Chester Road, Sunderland
B. K. Patnaik
Affiliation:
Department of Geriatric Medicine, Sunderland General Hospital, Chester Road, Sunderland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Long-term clinical and biochemical vitamin C (ascorbic acid and dehydroascorbic acid) status and dietary intake of vitamin C were monitored for 18 months in twenty-three relatively-healthy elderly subjects living at home in the north of England.

2. Plasma vitamin C showed a strong positive correlation with buffy-coat vitamin C both cross-sectionally between subjects and longitudinally within subjects; plasma levels, therefore, were almost as good an index of long-term status as buffy-coat levels.

3. Vitamin C intake was strongly correlated with plasma and with buffy-coat levels both between subjects and within subjects. This contrasts with the poor correlation observed between riboflavin intake and biochemical riboflavin status in the same subjects.

4. Subjects with relatively high average intakes showed considerable seasonal variation, and several widely-spaced measurements would be needed to characterize their long-term status accurately. Those with low average intakes and blood levels showed little variation during the study.

5. The strongest within-subject correlation was obtained by relating the biochemical values to the 7 d dietary intake directly preceding the biochemical analysis. Blood and tissue levels therefore appear to be strongly related to the current dietary intake.

6. Although some subjects had blood vitamin C levels consistently within the region associated with biochemical deficiency, none showed clinical evidence of specific deficiency symptoms.

7. After the main study, fifteen of the subjects received supplementary vitamin C for 2 months. Plasma and buffy-coat levels rose sharphy, but fell to presupplementation levels within 1 month of withdrawal, emphasizing the transitory nature of increased tissue levels. No significant changes were detected in the following collagen-related urinary ratios: hydroxyproline: creatinine, proline: creatinine, proline: total amino-nitrogen and proline: hydroxyproline in hydrolysates either of whole urine or of various fractions. These variables thus appear to be insensitive to short-term changes in vitamin C status over the ranges encountered in this study.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Andrews, J. & Brook, M. (1968). Geront. clin. 10, 128.Google Scholar
Andrews, J., Letcher, M. & Brook, M. (1969). Br. med. J. ii, 416.CrossRefGoogle Scholar
Arthur, G., Monro, J. A., Poore, P., Rilwan, W. B. & Murphy, E. La C. (1967). Br. med. J. i, 732.CrossRefGoogle Scholar
Attwood, E. C., Robey, E. D., Ross, J., Bradley, F. & Kramer, J. J. (1974). Clinica chim. Acta 54, 95.CrossRefGoogle Scholar
Barkhan, P. & Howard, A. N. (1958). Biochem. J. 70, 163.CrossRefGoogle Scholar
Barnes, M. J. & Kodicek, E. (1972). Vitam. Horm. 30, I.Google Scholar
Bates, C. J. (1977). Clin. Sci. mol. Med. 52, 535.Google Scholar
Bates, C. J. (1979). Int. Z. Vitam Forch. (In the Press.)Google Scholar
Berry, W. T. C. & Darke, S. J. (1972). Age Ageing 1, 177.CrossRefGoogle Scholar
Blumenkrantz, N. & Asboe-Hansen, G. (1975). Clin. Biochem. 8, 177.CrossRefGoogle Scholar
Bowers, E. F. & Kubik, M. M. (1965). Br. J. clin. Pract. 19, 141.CrossRefGoogle Scholar
Brocklehurst, J. C., Griffiths, L. L., Taylor, G. F., Marks, J., Scott, D. L. & Blackley, J. (1968). Geront. clin. 10, 309.CrossRefGoogle Scholar
Burkley, K. (1968). Urinary hydroxyproline excretion in scurvy. MS thesis, University of Iowa, Iowa, USA.Google Scholar
Burr, M. L., Elwood, P. C., Hole, D. J., Hurley, R. J. & Hughes, R. E. (1974). Am. J. clin. Nutr. 27, 144.CrossRefGoogle Scholar
Burr, M. L., Hurley, R. J. & Sweetnam, P. (1975). Geront. clin. 17, 236.CrossRefGoogle Scholar
Denson, K. W. & Bowers, E. F. (1961). Clin. Sci. 21, 157.Google Scholar
Department of Health and Social Security (1972). Rep. Hlth Soc. Subj. no. 3. London: HM Stationery Office.Google Scholar
Department of Health and Social Security (1979). Rep. Hlth Soc. Subj. no. 16. London: H.M. Stationery Office.Google Scholar
Eddy, T. P. (1972). Br. J. Nutr. 27, 537.CrossRefGoogle Scholar
Eddy, T. P. & Taylor, G. F. (1977). Age Ageing 6, 6.CrossRefGoogle Scholar
Efron, M. L., Bixby, E. M., Hockaday, T. D. R., Smith, L. H. & Meshorer, E. (1968). Biochim. biophys. Acta 165, 238.CrossRefGoogle Scholar
Gibson, S. L. M., Moore, F. M. L. & Goldberg, A. (1966). Br. med. J. i, 1152.CrossRefGoogle Scholar
Goodwin, J. F. (1968). Clin. Chem. 14, 1080.CrossRefGoogle Scholar
Griffiths, L. (1968). In Vitamins in the Elderly, p. 34. [Exton-Smith, A. N. and Scott, D. L., editors.] Bristol: J. Wright.CrossRefGoogle Scholar
Griffiths, L. L., Brocklehurst, J. C., Scott, D. L., Marks, J. & Blackley, J. (1967). Geront. clin. 9, 1.CrossRefGoogle Scholar
Kirk, J. E. & Chieffi, M. (1953). J. Geront. 8, 305.CrossRefGoogle Scholar
Loh, H. S. & Wilson, C. W. M. (1971 a). Br. med. J. iii, 733.CrossRefGoogle Scholar
Loh, H. S. & Wilson, C. W. M. (1971 b). Int. Z. VitumForsch. 41, 253.Google Scholar
McLean, H. E., Dodds, P. M., Stewart, A. W., Beaven, D. W. & Riley, C. G. (1976). N. Z. med. J. 84, 345.Google Scholar
McLennan, W. J., Coombe, N. B., Martin, P. & Mason, B. J. (1975). Age Ageing 4, 189.CrossRefGoogle Scholar
McLennan, W. J. & Hamilton, J. C. (1976). Age Ageing 5, 43.CrossRefGoogle Scholar
MacLeod, R. D. M. (1972). Age Ageing 1, 99.CrossRefGoogle Scholar
Marchand, C. M. & Pelletier, O. (1977). Int. Z. VitamForsch. 47, 236.Google Scholar
Mitoma, C. & Smith, T. E. (1960). J. biol. Chem. 235, 426.CrossRefGoogle Scholar
Morgan, A. F., Gillum, H. L. & Williams, R. C. (1955). J. Nutr. 55, 431.CrossRefGoogle Scholar
Morse, E. H., Potgieter, M. & Walker, G. R. (1956). J. Nutr. 60, 229.CrossRefGoogle Scholar
Pelletier, O. (1968). J. Lab. clin. Med. 72, 674.Google Scholar
Roderuck, C., Burrill, L., Campbell, L. J., Brakke, B. E., Childs, M. T., Leverton, R., Chaloupka, M., Jebe, E. H. & Swanson, P. P. (1958). J. Nurr. 66, 15.Google Scholar
Rutishauser, I. H. E., Bates, C. J., Paul, A. A., Black, A. E., Mandal, A. R. & Patnaik, B. K. (1979). Br. J. Nutr. 4, 33.CrossRefGoogle Scholar
Technicon Instruments Co. Ltd (1972). Technicon Clinical Method no. 11. Basingstoke, Hants: Technicon Instruments Co. Ltd.Google Scholar
Wilson, T. S., Datta, S. B., Murrell, J. S. & Andrews, C. T. (1973). Age Ageing 2, 163.CrossRefGoogle Scholar
Windsor, A. C. W. & Williams, C. B. (1970). Br. med. J. i, 732.CrossRefGoogle Scholar
Woodhill, J. M. (1970). Int. Z. VitamForsch. 40, 520.Google Scholar