Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T05:44:23.890Z Has data issue: false hasContentIssue false

Long-term adaptation of pancreatic response by dogs to dietary fats of different degrees of saturation: Olive and sunflower oil

Published online by Cambridge University Press:  09 March 2007

M. C. Ballesta
Affiliation:
Instituto de Nutrición y Tecnología de Alimentos, Departamento de Fisiología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
M. Mañas
Affiliation:
Instituto de Nutrición y Tecnología de Alimentos, Departamento de Fisiología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
F. J. Mataix
Affiliation:
Instituto de Nutrición y Tecnología de Alimentos, Departamento de Fisiología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
E. Martínez-victoria
Affiliation:
Instituto de Nutrición y Tecnología de Alimentos, Departamento de Fisiología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
I. Seiquer
Affiliation:
Instituto de Nutrición y Tecnología de Alimentos, Departamento de Fisiología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mongrel dogs were fed, from weaning to 9 months of age, on one of two diets that differed only in the type of fat content (virgin olive oil or sunflower oil) to compare the composition of exocrine pancreatic secretion in the basal period and in response to food. In resting pancreatic flow, electrolytes and the specific activities of amylase, lipase and chymotrypsin were similar in both experimental groups. However, lipase and amylase outputs, and amylase and protein concentrations were significantly higher in the group fed on the diet rich in sunflower oil. Food intake was not followed by any change in flow-rate or electrolyte or protein content in the group given the diet rich in olive oil. Amylase activity and output were also lower in this group, as was lipase output, whereas activity and specific activity of chymotrypsin were lower in dogs fed on the diet containing sunflower oil. The differences traceable to the composition of the two types of dietary fat supplied may be related to the balance between factors that stimulate and inhibit pancreatic secretion.

Type
Diet and Lipid Metabolism
Copyright
Copyright © The Nutrition Society 1990

References

Aponte, G. W., Fink, A. S., Meyer, J. H., Takemoto, K. & Taylor, I. L. (1985). Regional distribution and release of peptide YY (PYY) with fatty acids of different chain length. American Journal of Physiology 249, G745G750.Google ScholarPubMed
Bazin, R. & Lavan, M. (1979). Diet composition and insulin effects on amylase to lipase ratio in pancreas of diabetic rats. Digestion 19, 386391.CrossRefGoogle ScholarPubMed
Behrman, H. R. & Kare, M. R. (1969). Adaptation of canine pancreatic enzymes to diet composition. Journal of Physiology 250, 667676.CrossRefGoogle Scholar
Bradford, M. A. (1976). A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Bucko, A., Kopec, Z. & Babala, J. (1969). Adaptation of amylase production in rat pancreas to altered glycide intake. Nutrition Dieta 11, 127136.Google ScholarPubMed
Corring, T. & Saucier, R. (1972). Secretion pancreatique sur porc fistulé. Adapation à la teneur en proteines du regime. (Pancreatic secretion in the fistulated pig. Adaptation to the protein in the diet.) Annales de Biologie Animale, Biochimie, Biophysique 12, 223241.Google Scholar
Debas, H. R. & Yamagishi, T. (1978). Evidence for pyloropancreatic reflex for pancreatic exocrine secretion. American Journal of Physiology 226, 3944.Google Scholar
Deschodt-Lanckman, M., Robberecht, P., Camus, J. & Christophe, J. (1971). Short-term adaptation of pancreatic hydrolases to nutritional and physiological stimuli in adult rats. Biochimie 53, 789796.CrossRefGoogle ScholarPubMed
Ekelund, K. & Johanson, C. (1980). Output of bile and pancreatic enzymes after test meals with different fat content. Influence of body weight on pancreatic enzyme composition. Acta Physiologica Scandinavica 110, 161165.CrossRefGoogle ScholarPubMed
Emde, C., Liehr, R. M., Gregor, M., Pleul, O., Riecken, E. O. & Menge, H. (1985). Lack of adaptative changes in human pancreatic amylase and lipase secretion in response to high-carbohydrate, low-fat diet applied by 10- day continuous intraduodenal infusions. Digestive Disease and Sciences 30, 204210.CrossRefGoogle Scholar
Faichney, A., Chey, W. Y., Kim, Y. C., Lee, K. Y., Kim, M. S. & Chang, T. M. (1981). Effect of sodium oleate on plasma secretin concentration and pancreatic secretion in dogs. Gastroenterology 81, 458462.CrossRefGoogle Scholar
Fink, A. S., Luxemburg, M. & Meyer, J. H. (1983 a). Regionally perfused fatty acids augment acid-induced canine pancreatic secretion. American Journal of Physiology 245, G78G84.Google ScholarPubMed
Fink, A. S., Taylor, I. L., Luxemburg, M. & Meyer, J H. (1983 b). Pancreatic polypeptide release by intraluminal fatty acids. Metabolism 32, 10631066.CrossRefGoogle ScholarPubMed
Folsch, U. R., Wincker, K. & Wormsley, K. G. (1978). Influence of repeated administration of cholecystokinin and secretin on the pancreas of the rat. Scandinavian Journal of Gastroenterology 13, 663671.CrossRefGoogle ScholarPubMed
Hickson, J. C. D. (1970). The secretion of pancreatic juice in response to stimulation of the vagus nerves in the pig. Journal of Physiology 206, 299322.CrossRefGoogle ScholarPubMed
Hoffman, G. (1963). Les Animaux de Laboratoire. Paris: Vigot Frères.Google Scholar
Hopman, W. P. N., Jansen, J. B. M. J. & Lamers, C. B. H.W. (1985). Comparative study of the effects of equal amounts of fat, protein, and starch on plasma CCK in man. Scandinavian Journal of Gastroenterology 20, 843847.CrossRefGoogle ScholarPubMed
Huertas, J. R., Madrid, J. A., Salido, G. M., Mañas, M. & Martinez-Victoria, E. (1985). Cimetidine modifies the late postprandial pancreatic hypersecretion in dogs. IRCS Medical Science 13, 635636.Google Scholar
Kim, Y. C., Faichney, A. & Ky, L. (1980). Endogenous release of secretin by sodium oleate in dog. Gastroenterology 78, 1195.Google Scholar
Konturek, S. J., Tasler, J., Bilski, J., Jong, A. J., Jansen, J. B. M. J. & Lamers, C. B. (1986). Physiological role and localization of CCK release in dogs. American Journal of Physiology 250, G391G397.Google ScholarPubMed
Low, A. G. (1982). The activity of pepsin, chymotrypsin and trypsin during 24 h periods in the small intestine of growing pigs. British Journal of Nutrition 48, 147159.CrossRefGoogle ScholarPubMed
Madrid, J. A., Salido, G. M., Martínez-Victoria, E., Mañas, M. & Mataix, F. J. (1985). Postprandial pancreatic exocrine secretion in dogs after oral administration of pirenzepine dihydrochloride. Drug Research 35, 15601562.Google ScholarPubMed
Malagelada, J. R., Dimango, E. P., Summerskill, W. H. J. & Go, W. L. W. (1976). Regulation of pancreatic and gallbladder functions by intraluminal fatty acids and bile acids in man. Journal of Clinical Investigation 58, 493499.CrossRefGoogle ScholarPubMed
Meyer, J. H. & Jones, R. S. (1974). Canine pancreatic responses to intestinally perfused fat and products of fat digestion. American Journal of Physiology 266, 11781187.CrossRefGoogle Scholar
Modlin, I. M., Hansky, J., Singer, M. & Walsh, J. H. (1979). Evidence that the cholinergic enteropancreatic reflex may be independent of CCK release. Surgery USA 86, 352361.Google Scholar
Mutt, V. & Jorpes, E. (1971). Hormonal peptides of the upper intestine. Biochemical Journal 125, 57P58P.CrossRefGoogle ScholarPubMed
Negrel, R., Serrero, G., Fernández López, V. & Ailhand, G. (1976). Esterolytic activities of rat intestinal mucosa. European Journal of Biochemistry 71, 249258.CrossRefGoogle ScholarPubMed
Noelting, G. & Bernfield, P. (1948). Sur les enzimes amilolytiques. III. La α-amylase dossage d'activité et contrôle de l'absence de β-amylase. (On amylolytic enzymes. III. Analysis of α-amylase activity and testing for the absence of β-amylase.) Helvetica Chimica Acta 31, 286290.CrossRefGoogle Scholar
Pappas, T. N., Debas, H. T., Chang, A. M. & Taylor, I. L. (1986). Peptide YY release by fatty acids is sufficient to inhibit gastric emptying in dogs. Gastroenterology 91, 13861389.CrossRefGoogle ScholarPubMed
Pappas, T. N., Debas, H. T., Goto, Y. & Taylor, I. L. (1985). PYY inhibits meal stimulated pancreatic and gastric secretion. American Journal of Physiology 248, GI18G123.Google Scholar
Partridge, I. G, Low, A. G., Sambrook, I. E. & Corring, T. (1982). The influence of diet on the exocrine pancreatic secretion of growing pigs. British Journal of Nutrition 48, 137146.CrossRefGoogle ScholarPubMed
Rebound, J. P., Ben Abdeljlil, A. & Desnuelle, P. (1962). Variations de la teneur en enzymes du pancreas de rat en fonction de la composition des regimes. (Variation of the amount of pancreatic enzymes of the rat in relation to diet composition.) Biochimica et Biophysica Acta 58, 326337.CrossRefGoogle Scholar
Robberecht, P., Deschodt-Lanckman, M., Camus, J., Bruylands, J. & Christophe, J. (1971). Rat pancreatic hydrolases from birth to weaning and dietary adaptation after weaning. American Journal of Physiology 221, 376381.CrossRefGoogle ScholarPubMed
Sabb, J. E., Godfrey, P. M. & Brannon, P. M. (1986). Adaptative response of rat pancreatic lipase to dietary fat. Effects of amount and type of fat. Journal of Nutrition 116, 892899.CrossRefGoogle ScholarPubMed
Saraux, B., Girard-Globa, A., Ouaged, M. & Vacher, D. (1982). Response of the exocrine pancreas to quantitative and qualitative variations in dietary lipids. American Journal of Physiology 243, G10G15.Google ScholarPubMed
Simoes-Nunes, C. (1985). Effects de la teneur et de la nature des lipides du régime alimentaire sur l'adaptation de la lipase pancreatique chez le pore. (Effects of the amount and kind of dietary fat on the adaptation of pancreatic lipase in the pig.) Reproduction, Nutrition, Développement 25, 809.CrossRefGoogle Scholar
Snook, J. T. (1971). Dietary regulation of pancreatic enzymes in the rat with emphasis on carbohydrates. American Journal of Physiology 221, 13831387.CrossRefGoogle Scholar
Stubbs, R. S. & Stabile, B. E. (1985). Role of CCK in pancreatic exocrine response to intraluminal amino acids and fat. American Journal of Physiology 248, G347G352.Google ScholarPubMed
White, T. T. & Murat, J. E. (1967). Les pancréatitis. Étude Clinique Experimentale et Thérapeutique. (Pancreatitis: Clinical, Experimental and Therapeutic Study), pp. 3992. Paris: La Expansion.Google Scholar
Wicker, C. & Puigsever, A. (1987). Effects of inverse changes in dietary lipid and carbohydrate on the synthesis of some pancreatic secretory proteins. European Journal of Biochemistry 162, 2530.CrossRefGoogle ScholarPubMed
Yamagishi, T. & Debas, H. T. (1980). GIP is not the mediator of the enterogastrone action of fat in the dog. Gastroenterology 78, 931936.CrossRefGoogle Scholar