Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T19:41:15.821Z Has data issue: false hasContentIssue false

Linoleate supplementation in steers modifies lipid composition of plasma lipoproteins but does not alter their fluidity

Published online by Cambridge University Press:  09 March 2007

Valérie Scislowski
Affiliation:
Unité de Recherches sur les Herbivores, Equipe Nutriments et Métabolismes, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand-Theix, 63122 St Genès Champanelle, France
Denys Durand*
Affiliation:
Unité de Recherches sur les Herbivores, Equipe Nutriments et Métabolismes, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand-Theix, 63122 St Genès Champanelle, France
Dominique Gruffat-Mouty
Affiliation:
Unité de Recherches sur les Herbivores, Equipe Nutriments et Métabolismes, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand-Theix, 63122 St Genès Champanelle, France
Claude Motta
Affiliation:
Laboratoire de Biochimie, Hôtel-Dieu, 63000 Clermont-Ferrand, France
Dominique Bauchart
Affiliation:
Unité de Recherches sur les Herbivores, Equipe Nutriments et Métabolismes, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand-Theix, 63122 St Genès Champanelle, France
*
*Corresponding author: Dr Denys Durand, fax +33 4 73 62 46 39, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The health value for man of lipids in bovine muscles can be improved by the addition of PUFA to the animals' diets, but such treatments can modify fluidity of plasma lipoproteins and therefore their metabolic functions. The aim of the present study was to analyse whether changes in chemical composition of lipoproteins in steers fed sunflower oil-rich diets altered lipoprotein fluidity, measured by fluorescence polarization and electron spin resonance. LDL, light HDL and heavy HDL fractions were isolated by ultracentrifugation from plasma of eighteen crossbred Charolais×Salers steers. For a period of 70d, animals were given a control diet (C, n 6) consisting of hay (540g/kg) and concentrate mixture (460g/kg) or the same basal diet supplemented with sunflower oil rich in n-6 PUFA (40g/kg diet DM), given either as crushed seeds (S, n 6) or as a free oil infused directly into the duodenum (O, n 6), thus avoiding ruminal hydrogenation of PUFA. We have shown that in bovine animals: (1) fluidity measurements by fluorescence polarization must be made at the bovine physiological temperature (38·5°C); (2) heavy HDL always appear as the less fluid lipoparticles; (3) electron spin resonance, which does not depend on lipoparticle size, is more appropriate to compare the fluidity of LDL with that of light HDL. The values for lipoprotein fluidity measured by both methods indicated that linoleate-rich diets did not have any effect when compared with diet C; however, chemical variables support a fluidification of lipoparticles, since in steers given the diet O, n-6 PUFA concentrations increased in polar (×1·8) and neutral (×1·6) lipids in lipoparticles (P=0·0001). The phospholipid:protein ratio increased in light (+20%, P=0·019) and heavy (+23%, P=0·06) HDL and especially in LDL (+46%, P=0·0001); the total cholesterol:phospholipid ratio decreased in the three lipoprotein classes (−15 to −30%, NS). Diet S led to similar but less pronounced effects. We concluded that linoleate-rich diets modified the chemical composition of plasma lipoproteins in steers, but did not alter their fluidity; this probably occurred as a result of ‘homeoviscous adaptation’, which ensured their functional capacity.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2004

References

Ashes, JR, Burley, RW, Davenport, JB & Sidhu, GS (1982) Effects of dietary supplements of protected lipids on the concentration and transport of ß-carotene and cholesterol in bovine blood and milk: unusual chromatographic behaviour of the high-density lipoprotein with high levels of β-carotene. J Dairy Res 49, 3949.CrossRefGoogle Scholar
Ashes, JR, Burley, RW, Sidhu, GS & Sleigh, RW (1984) Effect of particle size and lipid composition of bovine blood high density lipoprotein on its function as a carrier of β-carotene. Biochim Biophys Acta 797, 171177.CrossRefGoogle ScholarPubMed
Bauchart, D (1993) Lipid absorption and transport in ruminants. J Dairy Sci 76, 38643881.CrossRefGoogle ScholarPubMed
Bauchart, D & Aurousseau, B (1981) Postprandial lipids in blood plasma of preruminant calves. J Dairy Sci 64, 20332042.CrossRefGoogle ScholarPubMed
Bauchart, D, Durand, D, Laplaud, PM, Forgez, P, Goulinet, S & Chapman, MJ (1989) Plasma lipoproteins and apolipoproteins in the preruminant calf, Bos spp: density distribution, physicochemical properties, and the in vivo evaluation of the contribution of the liver to lipoprotein homeostasis. J Lipid Res 30, 14991514.CrossRefGoogle ScholarPubMed
Belcher, D, Stillwell, W, Langsford, CA & Wassall, SR (1988) Effect of fish oils on rat plasma lipoproteins. Biochem Biophys Res Commun 150, 10631068.CrossRefGoogle ScholarPubMed
Ben-Yashar, V & Barenholz, Y (1991) Characterization of the core and surface of human plasma lipoproteins. A study based on the use of five fluorophores. Chem Phys Lipids 60, 114.CrossRefGoogle ScholarPubMed
Berlin, E, Judd, JT, Marshall, MW & Kliman, PG (1987) Dietary linoleate increases fluidity and influences chemical composition of plasma low density lipoprotein in adult men. Atherosclerosis 66, 215225.CrossRefGoogle ScholarPubMed
Berlin, E, Judd, JT, Nair, P, Jones, DY & Taylor, R (1991a) Dietary fat and hormonal influences on lipoprotein fluidity and composition in premenauposal women. Atherosclerosis 86, 95110.CrossRefGoogle Scholar
Berlin, E, Shapiro, SG & Young, C (1991b) Relative effects of feeding saturated fats and cholesterol on fluidity of rabbit lipoproteins. Comp Biochem Physiol 98, 343346.CrossRefGoogle ScholarPubMed
Berlin, E & Young, C (1980) Influence of dietary fats on the fluidity of the lipid domains of rabbit plasma lipoproteins. Atherosclerosis 35, 229241.CrossRefGoogle ScholarPubMed
Chilliard, Y, Ferlay, A & Doreau, M (2001) Contrôle de la qualité nutritionnelle des matières grasses du lait par l'alimentation des vaches laitières: acide gras trans, polyinsaturés, acide linoléique conjugué (Dietary control of milk fat nutritional quality in the dairy cow: trans and polyunsaturated fatty acids, and conjugated linoleic acid). INRA Prod Anim 14, 323335.CrossRefGoogle Scholar
Clinquart, A, Micol, D, Brundseaux, C, Dufrasne, I & Istasse, L (1995) Utilisation des matières grasses chez les bovins à l'engraissement (Use of fat in fattening diets for cattle). INRA Prod Anim 8, 2942.CrossRefGoogle Scholar
Dachet, C, Motta, C, Neufcour, D & Jacotot, B (1990) Fluidity changes and chemical composition of lipoproteins in type IIa hyperlipoproteinemia. Biochim Biophys Acta 1046, 6472.CrossRefGoogle ScholarPubMed
Demeyer, D & Doreau, M (1999) Targets and procedures for altering ruminant meat and milk lipids. Proc Nutr Soc 58, 593607.CrossRefGoogle ScholarPubMed
Doreau, M, Demeyer, DI & Van Nevel, CJ (1997) Transformations and effects of unsaturated fatty acids in the rumen. Consequences on milk fat secretion. In Milk Composition, Production and Biotechnology, pp. 7392 [Welch, RAS, Burns, DJW, Davis, SR, Popay, AI and Prosser, CG, editors]. Oxford: CAB International.Google Scholar
Doreau, M & Ferlay, A (1994) Digestion and utilisation of fatty acids by ruminants. Anim Feed Sci Technol 45, 379396.CrossRefGoogle Scholar
Durand, D, Scislowski, V, Gruffat-Mouty, D & Bauchart, D (2000) Effet de rations enrichies en acide linoléique sur les lipoprotéines plasmatiques chez le bouvillon (Effect of linoleic-rich diets on plasma lipoproteins in steers). Nutr Clin Metab 14, Suppl. 2, 151.Google Scholar
Folch, J, Lees, M & Sloane-Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.CrossRefGoogle ScholarPubMed
Frohlich, J, McLeod, R & Hon, K (1982) Lecithin:cholesterol acyl transferase (LCAT). Clin Biochem 15, 269278.CrossRefGoogle ScholarPubMed
Hubbell, WL & McConnell, HM (1969) Orientation and motion of amphiphilic spin label in membranes. Proc Natl Acad Sci 64, 2027.CrossRefGoogle ScholarPubMed
Jenkins, KJ & Kramer, JK (1986) Influence of low linoleic and linolenic in milk replacer on calf performance and lipids in blood plasma, heart and liver. J Dairy Sci 69, 13741386.CrossRefGoogle ScholarPubMed
Jenkins, TC (1993) Lipid metabolism in the rumen. J Dairy Sci 71, 38513863.CrossRefGoogle Scholar
Jonas, A (1977) Microviscosity of lipid domains in human serum lipoproteins. Biochim Biophys Acta 486, 1022.CrossRefGoogle Scholar
Jonas, A (1979) Interaction of bovine serum high density lipoprotein with mixed vesicles of phosphatidylcholine and cholesterol. J Lipid Res 20, 817824.CrossRefGoogle ScholarPubMed
Keith, AD, Sharnoff, M & Cohn, GE (1973) A summary and evaluation of spin labels used as probes for biological membrane structure. Biochim Biophys Acta 300, 379419.CrossRefGoogle ScholarPubMed
Klausner, RD, Kleinfeld, AM, Hoover, RL & Karnovsky, MJ (1980) Lipid domains in membranes. J Biol Chem 255, 12861295.CrossRefGoogle ScholarPubMed
Legrand, P, Bourre, JM, Descomps, B, Durand, G & Renaud, S (2001)Lipides in Apports Nutritionnels Conseillés pour la population Française (Lipids in Recommended Dietary Advances for the French Population), pp. 6382, Editions TEC & DOC (Paris).Google Scholar
Leplaix-Charlat, L (1995) Effets des acides gras et du cholestérol alimentaires sur le métabolisme des lipides et des lipoprotéines aux niveaux plasmatiques et hépatique chez le veau préruminant: conséquences sur la composition lipidique des tissues (Effects of dietary fatty acids and cholesterol on plasma and hepatic metabolisms of lipids and lipoproteins in preruminantscalf: consequence on the lipid composition in tissues), PhD Thesis, University of Aix-Marseille III.Google Scholar
Leplaix-Charlat, L, Bauchart, D, Durand, D, Laplaud, PM & Chapman, MJ (1996) Plasma lipoproteins in preruminant calves fed diets containing tallow or soybean oil with and without cholesterol. J Dairy Sci 79, 12671277.CrossRefGoogle ScholarPubMed
Loo, G, Berlin, E, Peters, RC, Kliman, PG & Wong, HYC (1991) Effect of dietary corn, coconut, and menhaden oils on lipoprotein, liver, and heart membrane composition in the hypercholesterolemic rabbit. J Nutr Biochem 2, 594603.CrossRefGoogle Scholar
Lund-Katz, S & Phillips, MC (1984) Packing of cholesterol molecules in human high density lipoproteins. Biochemistry 23, 11301138.CrossRefGoogle ScholarPubMed
Maggio, B, Diplock, AT & Lucy, JA (1977) Interactions of tocopherols and ubiquinones with monolayers of phospholipids. Biochem J 161, 111121.CrossRefGoogle ScholarPubMed
Pownall, HJ, Jackson, RL, Roth, RI, Gotto, AM, Patsch, JR & Kummerow, FA (1980) Influence of an atherogenic diet on the structure of swine low density lipoproteins. J Lipid Res 21, 11081115.CrossRefGoogle ScholarPubMed
Richard, MJ, Stewart, JW, Heeg, TR, Wiggers, KD & Jacobson, NL (1980) Blood plasma lipoprotein and tissue cholesterol of calves fed soybean oil, corn oil, vegetable shortening or tallow. Atherosclerosis 37, 513520.CrossRefGoogle ScholarPubMed
Shinitzky, M (1984) Membrane fluidity and cellular functions Physiology of Membrane Fluidity, pp. 151 [Shinitzky, M, editor]. Boca Raton, FL: CRC Press, Inc.Google Scholar
Shinitzky, M & Barenholz, Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515, 367394.CrossRefGoogle ScholarPubMed
Snedecor, GW & Cochran, WG (1979) The comparison of two samples. In Statistical Methods, 6th ed., Ames, IA: Iowa State University.Google Scholar
Sola, R, Baudet, MF, Motta, C, Maillé, M, Boisnier, C & Jacotot, B (1990) Effects of dietary fats on the fluidity of human high-density lipoprotein: influence of the overall composition and phospholipid fatty acids. Biochim Biophys Acta 1043, 4351.CrossRefGoogle ScholarPubMed
Sola, R, Motta, C, Maille, M, Bargallo, MT, Boisnier, C, Richard, JL & Jacotot, B (1993) Dietary monounsaturated fatty acids enhance cholesterol efflux from human fibroblasts. Arterioscler Thromb 13, 958966.CrossRefGoogle ScholarPubMed
Storry, JE, Brumby, PE, Tuckley, B, Welch, VA, Stead, D & Fulford, RJ (1980) Effect of feeding protected lipid to dairy cows in early lactation on the composition of blood lipoproteins and secretion of fatty acids in milk. J Agric Sci Camb 94, 503516.CrossRefGoogle Scholar
Talavera, EM, Zafra, MF, Gil-Villarino, A, Pérez, MI, Alvarez-Pez, JM & Garcia-Peregrin, E (1997) Changes in chemical composition and physico-chemical properties of chick low- and high-density lipoproteins induced by supplementation of coconut oil to the diet. Biochimie 79, 333340.CrossRefGoogle ScholarPubMed
Tall, AR, Atkinson, D, Small, DM & Mahley, RW (1977) Characterization of the lipoproteins of atherosclerotic swine. J Biol Chem 252, 72887293.CrossRefGoogle ScholarPubMed
Urano, S, Yano, K & Matsuo, M (1988) Membrane-stabilizing effect of vitamin E: effect of α-tocopherol and its model compounds on fluidity of lecithin liposomes. Biochem Biophys Res Commun 150, 469475.CrossRefGoogle ScholarPubMed
Vermorel, M (1978) Feed evaluation for ruminants II. The new energy systems proposed in France. Livest Prod Sci 5, 347365.CrossRefGoogle Scholar
Wood, JD, Enser, M, Fisher, AV, Nute, GR, Richardson, RI & Sheard, PR (1999) Animal nutrition and metabolism group symposium on ‘improving meat production for future needs': manipulating meat quality and composition. Proc Nutr Soc 58, 363370.CrossRefGoogle Scholar